Journal of Materials Science

, Volume 7, Issue 3, pp 279–288 | Cite as

Elastic wave propagation in Bi1⋅60Sb0⋅40Te3 and Bi2Te3

  • Y. C. Akgöz
  • G. A. Saunders
  • Z. Sümengen


The six independent elastic constants of the monocrystalline, pseudo-binary alloy Bi1·60Sb0·40Te3 have been measured by the ultrasonic pulse-echo technique. The elastic behaviour is compared and contrasted with those of Bi2Te3 and the group V semimetals with crystal structures belonging to the same point group, ¯3m. Elastic wave-velocity surface cross-sections, particle displacement and energy flux vectors are presented and discussed; the pure mode axes — knowledge of which is most useful in experimental ultrasonic studies — are given. Elastic wave propagation in Bi1.60Sb0.40Te3 and Bi2Te3 shows characteristics expected for layer-type crystals with weak interlayer binding, i.e., comparatively large ultrasonic velocities in thexy plane and lower velocities along the direction (z) of weakest binding.


Bi2Te3 Ultrasonic Velocity Weak Binding Flux Vector Particle Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A recent review of the materials available as thermoelectric generators can be found inD. A. Wright, Metallurgical Reviews, No. 148 (1970) 147.Google Scholar
  2. 2.
    J. R. Drabble, Progress in Semiconductors,7, ed.A. F. Gibson andR. E. Burgess (Heywood and Co., London, 1963) 45.Google Scholar
  3. 3.
    C. B. Thomas andH. J. Goldsmid,J. Phys. D: Appl. Phys. 3 (1970) 333.Google Scholar
  4. 4.
    Idem, J. Phys. C: Solid Stat. Phys. 3 (1970) 696.Google Scholar
  5. 5.
    J. O. Jenkins, J. A. Rayne, andR. W. Ure,Phys. Letts. 30A (1969) 349.Google Scholar
  6. 6.
    J. R. Drabble andC. H. L. Goodman,J. Phys. Chem. Solids 5 (1958) 142.Google Scholar
  7. 7.
    N. G. Pace, G. A. Saunders, andZ. Sümengen,ibid 31 (1970) 1467.Google Scholar
  8. 8.
    U. Berkholtz,Z. Naturforsch 13a (1958) 780.Google Scholar
  9. 9.
    W. R. Bekebrede andO. J. Guentert,J. Phys. Chem. Solids 23 (1962) 1023.Google Scholar
  10. 10.
    A. Sagar andJ. W. Faust,J. Appl. Phys. 38 (1967) 482.Google Scholar
  11. 11.
    Idem, ibid 38 (1967) 2240.Google Scholar
  12. 12.
    Y. C. Akgöz andG. A. Saunders,J. Mater. Sci. 6 (1971) 395.Google Scholar
  13. 13.
    T. Alper andG. A. Saunders,J. Phys. Chem. Solids 28 (1967) 1637.Google Scholar
  14. 14.
    N. G. Pace andG. A. Saunders,ibid 32 (1971) 1585.Google Scholar
  15. 15.
    N. G. Pace, Ph.D. Thesis, University of Durham (1971).Google Scholar
  16. 16.
    P. C. Waterman,Phys. Rev. 113 (1959) 1240.Google Scholar

Copyright information

© Chapman and Hall Ltd 1972

Authors and Affiliations

  • Y. C. Akgöz
    • 1
  • G. A. Saunders
    • 1
  • Z. Sümengen
    • 1
  1. 1.Department of Applied Physics and ElectronicsUniversity of DurhamDurhamUK

Personalised recommendations