Journal of Materials Science

, Volume 4, Issue 11, pp 955–961 | Cite as

Investigation of the MgO∶Fe system using the Mössbauer effect

  • V. G. Bhide
  • B. R. Tambe
Papers

Abstract

The MgO∶Fe system as subjected to a variety of heat-treatments has been studied using the Mössbauer effect for Fe57. On firing the MgO∶Fe samples in air, iron initially dissolves in the lattice in its ferric state and is associated with a charge-compensating vacancy. However, on exceeding a certain concentration, magnesioferrite precipitates out. Hydrogen firing of these samples tends to create clusters of metallic iron and Fe2+ at Mg2+ sites. On refiring the samples in air, metallic iron is converted to Fe2O3 and Fe2+ to Fe3+ which subsequently reacts with the lattice to give magnesioferrite and a small fraction of Fe3+ dissolved in the lattice. These changes are found to be completely reversible. In some cases the magnesioferrite particle size is so small that it exhibits superparamagnetism. Although there is a limit to the solubility of Fe3+ in MgO, Fe2+ can be dissolved to any extent.

Keywords

Hydrogen Iron Polymer Particle Size Fe2O3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. W. Groves andM. E. Fine,J. Appl. Phys. 35 (1964) 3587.Google Scholar
  2. 2.
    B. Phillips, S. Somiya, andA. Muan,J. Amer. Ceram. Soc. 44 (1961) 167.Google Scholar
  3. 3.
    L. C. F. Blackman,ibid 42 (1959) 143.Google Scholar
  4. 4.
    R. W. Davidge,J. Materials Sci. 2 (1967) 339.Google Scholar
  5. 5.
    G. Shirane, D. E. Cox, andS. L. Ruby,Phys. Rev. 125 (1962) 1158.Google Scholar
  6. 6.
    D. J. Simkin, P. J. Ficalora, andR. A. Bernheim,Phys. Lett. 19 (1965) 536.Google Scholar
  7. 7.
    V. G. Bhide andM. S. Multani,Phys. Rev. 139A (1965) 1983.Google Scholar
  8. 8.
    U. Gonser, R. W. Grant, H. Wiedersich, R. Chang, andA. H. Muir,Bull. Am. Phys. Soc. 11 (1966) 363.Google Scholar
  9. 9.
    O. C. Kistner andA. W. Sunyar,Phys. Rev. Lett. 4 (1960) 412.Google Scholar
  10. 10.
    V. G. Bhide andG. K. Shenoy Phys. Rev. 143 (1966) 309.Google Scholar
  11. 11.
    R. M. Housley andU. Gonser ibid 171 (1968) 480.Google Scholar
  12. 12.
    A. J. Dekker, in “Solid State Physics” (Macmillan, New York, London, 1963). p. 470.Google Scholar
  13. 13.
    E. W. Gorter,Nature 165 (1950) 798.Google Scholar
  14. 14.
    V. G. Bhide andS. K. Date,Phys. Rev. 172 (1968) 345.Google Scholar
  15. 15.
    V. G. Bhide andH. C. Bhasin,ibid 290.Google Scholar
  16. 16.
    W. D. Compton,ibid 107 (1957) 1271.Google Scholar
  17. 17.
    H. W. Etzel andD. A. Patterson,ibid 112 (1958) 1112.Google Scholar
  18. 18.
    L. Neel,Ann. Geophys. 5 (1949) 99.Google Scholar
  19. 19.
    W. Kundig, H. Bommel, G. Constabaris, andR. H. Lindquist,Phys. Rev. 142 (1966) 327.Google Scholar
  20. 20.
    W. Kundig, K. J. Ando, R. H. Lindquist, andG. Constrabaris,Czech. Jour. Phys. B17 (1967) 467.Google Scholar
  21. 21.
    W. J. Schuele, S. Shtrikman, andD. Treves,J. Appl. Phys. 36 (1965) 1010.Google Scholar
  22. 22.
    U. Gonser, H. Widersich, andR. W. Grant,ibid 39 (1968) 1004.Google Scholar
  23. 23.
    R. B. Frenkel andN. A. Blum,Bull. Am. Phys. Soc. 12 (1967) 24.Google Scholar
  24. 24.
    V. G. Bhide andH. C. Bhasin,Phys. Rev. 159 (1967) 586.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1969

Authors and Affiliations

  • V. G. Bhide
    • 1
  • B. R. Tambe
    • 1
  1. 1.Basic Physics DivisionNational Physical LaboratoryNew DelhiIndia

Personalised recommendations