Journal of Materials Science

, Volume 20, Issue 5, pp 1815–1822 | Cite as

Glass formation region and lithium ion conduction in the oxyfluorophosphate glasses

  • A. R. Kulkarni
  • H. S. Maiti
  • A. Paul


Oxyfluorophosphate glasses containing about 80 mol% of [LiF+Li2O] show unusually high lithium ion conductivity at elevated temperatures. A detailed investigation has been carried out on the glasses prepared by both conventional cooling and a rapid quenching technique. Chemical analysis of the glasses reveals fluorine loss during melting and it becomes difficult to make glasses with exact predetermined compositions. Electrical conductivity of the glasses, determined from complex impedance analysis increases with Li2O content. A glass with nominal composition 70 LiF∶15 Li2O∶15 Al(PO3)3 shows the highest conductivity (~ 1.3×10−3 ohm−1 cm−1 around 200° C) among all the compositions studied. An interesting feature of the impedance plot is the near perfect semicircle for bulk relaxation indicating a narrow distribution of relaxation times. This has been explained on the basis of a relatively small proportion of lithium ions which are mobile. The electrical conductivity of the glasses is found to be essentailly independent of dissolved water content. The infrared spectra of these glasses (2 to 50μm region) could not produce much useful structural information.


Li2O Glass Formation Impedance Plot Glass Formation Region High Lithium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. S. Maiti, A. R. Kulkarni andA. Paul,Solid State Ionics 9/10 (1983) 605.Google Scholar
  2. 2.
    K. K. Evastrop'ev, G. I. Veksler andB. S. Kondrat'eva,Dokl. Akad. Nauk SSR 215 (1974) 902.Google Scholar
  3. 3.
    M. Jagla andJ. O. Isard,Mater. Res. Bull. 15 (1980) 1327.Google Scholar
  4. 4.
    A. R. Kulkarni, H. S. Maiti andA. Paul,Mater. Lett. 2 (1984) 534.Google Scholar
  5. 5.
    A. R. Kulkarni, PhD thesis, Indian Institute of Technology, Kharagpur (1984).Google Scholar
  6. 6.
    A. M. Glass, K. Nassau andT. J. Negram,J. Appl. Phys. 49 (1978) 4808.Google Scholar
  7. 7.
    K. Nassau, C. A. Wang andM. Grasso,J. Amer. Ceram. Soc. 62 (1979) 74.Google Scholar
  8. 8.
    Idem, ibid. 62 (1979) 503.Google Scholar
  9. 9.
    J. O. Isard, K. K. Mallick andM. Jagla,Solid State Ionics 9/10 (1983) 623.Google Scholar
  10. 10.
    P. A. Tick,Phys. Chem. Glasses 23 (1982) 154.Google Scholar
  11. 11.
    D. Kline andP. J. Bray,ibid. 7 (1966) 41.Google Scholar
  12. 12.
    I. D. Raistrick, Ho Chun andR. A. Huggins,J. Electrochem. Soc. 123 (1976) 1469.Google Scholar
  13. 13.
    I. M. Hodge andA. Eisenberg,J. Non-Cryst. Solids 27 (1977) 441.Google Scholar
  14. 14.
    A. B. Lidiard, “Handbuch der Physik” Vol 20, edited by S. Flugge (Springer, Berlin, 1957) p. 246.Google Scholar
  15. 15.
    R. J. Grant, M. D. Ingram, I. M. Hodge andA. R. West,J. Amer. Ceram. Soc. 60 (1977) 226.Google Scholar
  16. 16.
    T. Minami, Y. Tokuma andM. Tanaka,J. Electrochem. Soc. 124 (1977) 1659.Google Scholar
  17. 17.
    A. Schiraldi,Electrochim. Acta 23 (1978) 1039.Google Scholar
  18. 18.
    T. Ninami andM. Tanaka,J. Non-Cryst. Solids 38/39 (1980) 289.Google Scholar
  19. 19.
    F. G. K. Bauck, “Mass Transport Phenomena in Ceramics”, edited by A. R. Cooper and A. Heuer, (Plenum Press, New York 1975) p. 337.Google Scholar
  20. 20.
    A. E. Owen andR. W. Douglas,J. Soc. Glass Technol. 43 (1959) 159.Google Scholar
  21. 21.
    J. H. Simmons, P. B. Elterman, C. J. Simmons andR. K. Mohr,J. Amer. Ceram. Soc. 62 (1979) 158.Google Scholar
  22. 22.
    H. A. Schaffer, J. Mecha andJ. Steiman,ibid. 62 (1979) 343.Google Scholar
  23. 23.
    G. C. Milnes andJ. O. Isard,Phys. Chem. Glasses 3 (1962) 157.Google Scholar
  24. 24.
    J. F. Cordaro, J. E. Kelly andM. Tomozawa,ibid. 22 (1981) 90.Google Scholar
  25. 25.
    W. E. Martinsen andT. D. Mcgee,J. Amer. Ceram. Soc. 54 (1971) 175.Google Scholar
  26. 26.
    M. Tanaka, M. Tomozawa andE. B. Watson,ibid. 63 (1980) 710.Google Scholar
  27. 27.
    H. Namikawa andY. Asahara,Yogyo-Kyokai-Shi 74 (1966) 205.Google Scholar
  28. 28.
    M. Tanaka, J. Acocella, M. Tomozawa andE. B. Watson,J. Amer. Ceram. Soc. 64 (1981) 720.Google Scholar
  29. 29.
    C. K. Shih,Diss. Abstr. 26 (1965) 1539.Google Scholar
  30. 30.
    G. J. Exharos, W. M. Risen andP. J. Miller,J. Chem. Phys. 60 (1974) 4145.Google Scholar
  31. 31.
    D. P. Button, R. Tandon, C. King, M. H. Velez, H. L. Tuller andD. R. Uhlmann,J. Non-Cryst. Solids 49 (1982) 129.Google Scholar
  32. 32.
    A. Levasseur, J. C. Brethous, J. M. Reau, P. Hagenmuller andM. Couzi,Solid State Ionics 1 (1980) 117.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • A. R. Kulkarni
    • 1
  • H. S. Maiti
    • 1
  • A. Paul
    • 1
  1. 1.Materials Science CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations