Skip to main content
Log in

Static fatigue of thermoplastic elastomers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The failure behaviour in static fatigue of thermoplastic elastomers was estimated on the basis of the stochastic theory proposed for the failure of rubber vulcanizates. A statistical analysis of lifetime distributions for a styrene-butadiene-styrene triblock copolymer (SBS) in creep and stress relaxation experiments was made by using a Weibull distribution, and the failure behaviour of SBS was related to morphological changes of structure in stretched states, observed with a transmission electron microscope. Wear-out failure, in which the failure rate increases with time, occurs in the creep and stress-relaxation processes, and is similar to that in a carbon-reinforced rubber vulcanizate. These results suggest that in SBS, polystyrene (PS) domains dispersed in a continuous polybutadiene matrix serve as physical crosslinks and reinforcing fillers. In the stress relaxation process, however, the increased energy dissipation caused by plastic deformation and disruption of the PS domains leads the material to be more stabilized at a constant stretch ratio. This prolongs the lifetime of the material, due to multi-crack initiation at many portions of a specimen. The differences between the failure behaviour of SBS and that of the rubber vulcanizates are mainly caused by morphological changes of the structure in SBS on deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Holden, E. T. Bishop andN. R. Legge,J. Polym. Sci. Part C 26 (1969) 37.

    Google Scholar 

  2. J. A. Manson andL. H. Sperling, “Polymer Blends and Composites” (Plenum Press, New York, 1976) p. 121.

    Google Scholar 

  3. M. Morton,J. Polym. Sci. Symposium No. 60 (1977) 1.

    Google Scholar 

  4. J. C. West andS. L. Cooper, in “Science and Technology of Rubber” edited by F. R. Eirich, (Academic Press, New York, 1978) p. 531.

    Google Scholar 

  5. M. Shen andH. Kawai,Amer. Inst. Chem. Engrs. J. 24 (1978) 1.

    Google Scholar 

  6. D. M. Brunwin, E. Fischer andJ. F. Henderson,J. Polymer Sci. Part C 26 (1969) 135.

    Google Scholar 

  7. D. G. Fesko andN. W. Tschoegl,ibid. 35 (1971) 51.

    Google Scholar 

  8. D. H. Kaelble,Trans. Soc. Rheol. 15 (1971) 235.

    Google Scholar 

  9. D. H. Kaelble andE. H. Cirlin,J. Polym. Sci. Symposium No. 43 (1973) 131.

    Google Scholar 

  10. M. Shen andV. A. Kaniskin,J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 2261.

    Google Scholar 

  11. J. A. Odell andA. Keller,Polym. Eng. Sci. 17 (1977) 544.

    Google Scholar 

  12. J. F. Beecher, L. Marker, R. D. Bradford andS. L. Aggarwal,J. Polym. Sci. Part C 26 (1969) 117.

    Google Scholar 

  13. T. L. Smith andR. A. Dickie,ibid. 26 (1969) 163.

    Google Scholar 

  14. T. L. Smith, in “Block Polymers”, edited by S. L. Aggarwal (Plenum Press, New York, 1970) p. 137.

    Google Scholar 

  15. Idem, J. Polym. Sci., Polym. Phys. Ed. 12 (1974) 1825.

    Google Scholar 

  16. T. Inoue, M. Moritani, T. Hashimoto andH. Kawai,Macromolecules 4 (1971) 500.

    Google Scholar 

  17. S. Kawabata, in “Durability of Macromolecular Materials”, edited by R. K. Eby, ACS Symposium Series 95 (American Chemical Society, Washington, D. C., 1979) p. 261.

    Google Scholar 

  18. K. Fukumori andT. Kurauchi,J. Mater. Sci. 19 (1984) 2501.

    Google Scholar 

  19. W. Weibull, “Fatigue Testing and Analysis of Results” (Pergamon Press, New York, 1961) p. 143.

    Google Scholar 

  20. J. H. K. Kao,J. Amer. Statis. Assoc. 51 (1956) 514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumori, K., Kurauchi, T. Static fatigue of thermoplastic elastomers. J Mater Sci 20, 1725–1732 (1985). https://doi.org/10.1007/BF00555277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00555277

Keywords

Navigation