Skip to main content
Log in

Effect of magnesium content on the stress exponent and effective stress in the steady state creep of Al-Mg alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stress exponent of steady state creep,n, and the internal (σ i) and effective stresses (σ e) have been determined using the strain transient dip test for a series of polycrystalline Al-Mg alloys creep tested at 300° C and compared with previously published data. The internal or dislocation back stress,σ i, varied with applied stress,σ, but was insensitive to magnesium content of the alloy, being represented by the empirical equationσ i=1.084σ 1.802. Such an applied stress dependence ofσ i can be explained by using an equation forσ i of the formσ i α(dislocation density)1/2 and published values for the stress dependence of dislocation density. Values of the friction stress,σ f, derived using the equationσ e/σ=(1−c) (1−σ f/σ), indicate thatσ f is not dependent on the magnesium content. A constant value ofσ f can best be rationalized by postulating that the creep dislocation structure is relatively insensitive to the magnesium content of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. D. Sherby andP. M. Burke,Progress Mat. Sci. 13 (1968) 323.

    Google Scholar 

  2. T. G. Langdon andP. Yavari, in “Creep and Fracture of Engineering Materials and Structures,” edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, UK, 1981) p. 71.

    Google Scholar 

  3. T. G. Langdon, in “Strength of Metals and Alloys,” Vol. 3, edited by R. C. Gifkins (Pergamon, Oxford, 1982) p. 1105.

    Google Scholar 

  4. R. Lagneborg,J. Mater. Sci. 3 (1968) 596.

    Google Scholar 

  5. P. L. Threadgill andB. Wilshire, in Proceedings of the Iron Steel Institute, Conference on “Creep Strength of Steels” (ISI, Sheffield, 1972) p. 8.

    Google Scholar 

  6. B. Wilshire, in “Creep in Structures”, edited by A. R. S. Porter and D. R. Hayhurst (Springer-Verlag, Berlin, 1981) p. 72.

    Google Scholar 

  7. C. N. Ahlquist andW. D. Nix,Acta Metall. 19 (1971) 373.

    Google Scholar 

  8. K. Toma, H. Yoshinaga andS. Morozumi,J. Jpn. Inst. Metals 38 (1974) 170.

    Google Scholar 

  9. H. Oikawa, N. Matsuno andS. Karashima,Met. Sci. 9 (1975) 209.

    Google Scholar 

  10. H. Oikawa, J. Kariya andS. Karashima,ibid. 8 (1974) 106.

    Google Scholar 

  11. D. O. Northwood andI. O. Smith,Phys. Status Solidi 83 (1984) 227.

    Google Scholar 

  12. Idem, Mater. Lett. 2 (1984) 339.

    Google Scholar 

  13. I. O. Smith, Australian Atomic Energy Commission Research Project Progress Report No. 15 (January 1971).

  14. C. N. Ahlquist andW. D. Nix,Scripta Metall. 3 (1969) 679.

    Google Scholar 

  15. J. C. Gibeling andW. D. Nix, in “Strength of Metals and Alloys”, Vol 2, Edited by R. C. Gifkins (Pergamon, Oxford, 1982) p. 613.

    Google Scholar 

  16. K. L. Murty, F. A. Mohamed andJ. E. Dorn,Acta Metall. 20 (1972) 1009.

    Google Scholar 

  17. K. L. Murty,Scripta Metall. 7 (1973) 899.

    Google Scholar 

  18. K. Kucharova, I. Saxl andJ. Cadek,Acta Metall. 22 (1974) 465.

    Google Scholar 

  19. H. Laks, C. D. Wiseman, O. D. Sherby andJ. E. Dorn,J. Appl. Mech. 24 (1957) 207.

    Google Scholar 

  20. R. Horiuchi andM. Otsuku,Trans. Jpn. Inst. Metals 13 (1972) 284.

    Google Scholar 

  21. M. Hansen andK. Anderko, “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958) p. 105.

    Google Scholar 

  22. P. Yavari andT. G. Langdon,Acta Metall. 30 (1982) 2181.

    Google Scholar 

  23. A. S. Argon, F. Prinz andW. C. Moffatt, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, UK, 1981) pp. 1–15.

    Google Scholar 

  24. S. Takeuchi andA. S. Argon,J. Mater. Sci. 11 (1976) 1542.

    Google Scholar 

  25. A. S. Argon andS. Takeuchi,Acta Metall. 29 (1981) 1877.

    Google Scholar 

  26. S. Takeuchi andA. S. Argon,ibid. 24 (1976) 883.

    Google Scholar 

  27. S. Karashima, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, UK, 1981) p. 31.

    Google Scholar 

  28. X. Meng andD. O. Northwood, University of Windsor, unpublished results (1984).

  29. W. Köster andW. Tauscher,Z. Metallkde 39 (1948) 111.

    Google Scholar 

  30. F. Dobes,Acta Metall. 28 (1980) 337.

    Google Scholar 

  31. A. Orlava andJ. Cadek,Z. Metallkde 65 (1974) 200.

    Google Scholar 

  32. J. Weertman,Acta Metall. 25 (1977) 1393.

    Google Scholar 

  33. G. E. Dieter, in “Mechanical Metallurgy”, 2nd Ed (McGraw-Hill, New York, 1976) p. 124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Engineering Materials Department, University of Windsor, Windsor, Ontario N9B 3P4, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Northwood, D.O., Moerner, L. & Smith, I.O. Effect of magnesium content on the stress exponent and effective stress in the steady state creep of Al-Mg alloys. J Mater Sci 20, 1683–1692 (1985). https://doi.org/10.1007/BF00555272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00555272

Keywords

Navigation