Skip to main content
Log in

A model for the compressive buckling of extended chain polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A model for the compressive buckling of an extended polymer chain is presented. The application of classical elastic instability analysis to an idealized polymer chain reveals that the bending rigidity and critical buckling loads for a chain are proportional to the force constants for valence bond angle bending and torsion. Highly oriented polymer fibres are treated as a collection of elastic chains that interact laterally. The critical stresses to buckle this collection of chains are calculated following a procedure developed to predict the compressive strengths of fibre-reinforced composites. This buckling stress is predicted to be equal to the shear modulus of the fibres and is the limiting value of compressive strength. Comparison of experimental and predicted values shows that the theory overestimates the compressive strength, but that there is a correlation of shear modulus with axial compressive strength. Consideration of flaws in both the theory and the material indicate that the compressive strength should be proportional to either the shear modulus or shear strength of the fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P :

axial compressive load (force)

P cr :

critical buckling load (force)

M,M i :

bending moments

l :

length of a link

p :

number of links

k :

elastic hinge constant

α,α i :

angular rotation of hinges

L :

overall chain or column length

v,v i :

lateral deflection of buckled chain or column

x, y, z :

Cartesian coordinate axes

E :

Young's modulus of isotropic column

I :

moment of inertia

a ij :

matrix coefficients

A p :

coefficient for exact buckling loads of chains

ΔT :

energy change due to work of external load on buckled column or chain

ΔU 1 :

bending strain energy change of buckled column or chain

ΔU 2, ΔU e2 , ΔU s2 :

strain energy changes in elastic foundation, where e refers to extension mode buckling and s refers to shear mode buckling

E t :

transverse modulus

G :

longitudinal shear modulus

b :

dimension associated with chain packing

A :

cross-sectional area per chain (=b 2)

f(x):

curve fitted to shape of buckled chain

m,n,r :

integers

a n :

coefficients of trigonometric series

ε y :

normal strain iny-direction

σ y :

normal stress iny-direction

γxy :

shear strain inxy plane

τxy :

shear stress inxy plane

u x :

displacement inx-direction

u y :

displacement iny-direction

V :

volume

References

  1. M. M. Schoppee andJ. Skelton,Tex. Res. J. 44 (1974) 968.

    Google Scholar 

  2. J. M. Greenwood andP. G. Rose,J. Mater. Sci. 9 (1974) 1809.

    Google Scholar 

  3. M. G. Dobb, D. J. Johnson andB. P. Saville,Polymer 22 (1981) 960.

    Google Scholar 

  4. T. Takahashi, M. Miura andK. Sakurai,J. Appl. Polymer Sci. 28 (1983) 579.

    Google Scholar 

  5. S. J. Deteresa, S. R. Allen, R. J. Farris andR. S. Porter,J. Mater. Sci. 19 (1984) 57.

    Google Scholar 

  6. S. R. Allen, A. G. Filippov, R. J. Farris andE. L. Thomas, Proceedings, 37th Annual Technical Conference, RP/C, SPI, Session 24-B, p. 1, Washington, DC (1982).

    Google Scholar 

  7. D. A. Zaukelies,J. Appl. Phys. 33 (1962) 2797.

    Google Scholar 

  8. K. Shigematsu, K. Imada andM. Takayanagi,J. Polymer Sci. A2 13 (1975) 73.

    Google Scholar 

  9. G. E. Attenburrow andD. C. Bassett,J. Mater. Sci. 14 (1979) 2679.

    Google Scholar 

  10. W. L. Wu, V. F. Holland andW. B. Black,J. Mater. Sci. 14 (1979) 250.

    Google Scholar 

  11. I. M. Ward, Ed., “Structure and Properties of Oriented Polymers” (John Wiley, New York, 1975).

    Google Scholar 

  12. C. J. Farrell andA. Keller,J. Mater. Sci. 12 (1977) 966.

    Google Scholar 

  13. K. Imada, T. Yamamoto, K. Shigematsu andM. Takayanagi,ibid. 6 (1971) 537.

    Google Scholar 

  14. Y. Tajima, Applied Polymer Symposia, No. 27, edited by J. L. White (John Wiley, New York, 1975) p. 229.

    Google Scholar 

  15. M. Takayanagi andT. Kajiyama,J. Macromol. Sci. Phys. B8 (1973).

  16. J. M. Dinwoodie,J. I. Wood Sci. 21 (1968) 37.

    Google Scholar 

  17. C. T. Keith andW. A. Cote Jr,Forest Prod. J. 18(3) (1968) 67.

    Google Scholar 

  18. C. W. Weaver andJ. G. Williams,J. Mater. Sci. 10 (1975) 1323.

    Google Scholar 

  19. C. R. Chaplin,ibid. 12 (1977) 347.

    Google Scholar 

  20. A. G. Evans andW. F. Adler,Acta. Metall. 26 (1978) 725.

    Google Scholar 

  21. C. A. Berg andM. Salama,J. Mater. Sci. 7 (1972) 216.

    Google Scholar 

  22. A. S. Argon, “Treatise on Materials Science and Technology”, Vol. 1, edited by Herbery Herman (Academic Press, New York, 1972) p. 79.

    Google Scholar 

  23. W. R. Jones andJ. W. Johnson,Carbon 9 (1971) 645.

    Google Scholar 

  24. H. M. Hawthorne andE. J. Teghtsoonian,J. Mater. Sci. 10 (1975) 41.

    Google Scholar 

  25. N. C. Gay andL. E. Weiss,Tectonophysics 21 (1974) 287.

    Google Scholar 

  26. B. W. Rosen, “Mechanics of Composite Strengthening”, ASM Seminar, Philadelphia, Pennsylvania, October (1964).

  27. H. Schuerçh,AIAA J. 4 (1966) 102.

    Google Scholar 

  28. L. B. Greszczuk,ibid. 13 (1975) 1311.

    Google Scholar 

  29. R. L. Foye, AIAA Paper No. 66-143, (January, 1966).

  30. S. P. Timoshenko andJ. M. Gere, “Theory of Elastic Stability” (McGraw-Hill, New York, 1961).

    Google Scholar 

  31. J. R. Lagger andR. R. June,J. Comp. Mater. 3 (1969) 48.

    Google Scholar 

  32. J. G. Davis Jr, PhD thesis, Virginia Polytechnic Institute and State University (1973).

  33. B. Harris,Composites 3 (1972) 152.

    Google Scholar 

  34. N. A. Pertzev andV. I. Vladimirov,J. Mater. Sci. Lett. 1 (1982) 153.

    Google Scholar 

  35. H. Mark,Trans. Faraday Soc. 32 (1936) 144.

    Google Scholar 

  36. J. P. Hummel andP. J. Flory,Macromol. 13 (1980) 479.

    Google Scholar 

  37. K. Toshiro, M. Kobayashi andH. Tadokoro,ibid. 10 (1977) 413.

    Google Scholar 

  38. L. -S. Li, L. F. Allard andW. C. Bigelow,J. Macromol. Sci. Phys. B22 (1983) 269.

    Google Scholar 

  39. R. J. Diefendorf andE. Tokarsky,Polymer Eng. Sci. 15 (1975) 150.

    Google Scholar 

  40. R. G. Snyder andG. Zerbi,Spectrochim. Acta. A 23a (1971) 391.

    Google Scholar 

  41. D. W. Madley, P. R. Pinnock andI. M. Ward,J. Mater. Sci. 4 (1969) 152.

    Google Scholar 

  42. S. L. Phoenix andJ. Skelton,Tex. Res. J. 44 (1974) 934.

    Google Scholar 

  43. M. G. Northolt andJ. J. Van Aartsen,J. Polymer Sci. Polymer Symp. 58 (1977) 283.

    Google Scholar 

  44. E. J. Roche, T. Takahashi andE. L. Thomas,Amer. Chem. Soc. Symp. Fiber Diffraction Methods 141 (1980) 303.

    Google Scholar 

  45. C. Bunn,Trans. Faraday Soc. 35 (1939) 482.

    Google Scholar 

  46. O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence andT. Weng,J. Appl. Phys. 41 (1970) 3373.

    Google Scholar 

  47. A. Kelly, “Strong Solids” (Oxford University Press, London, 1966).

    Google Scholar 

  48. K. Chen, C. W. Lemaistre, J. H. Wang andR. J. Diefendorf, 182nd National Conference ACS, New York, Poly 137, August (1981).

  49. M. G. Dobb, D. J. Johnson andB. P. Saville,J. Polymer Sci. Polymer Symp. 58 (1977) 237.

    Google Scholar 

  50. C. R. Wylie andL. C. Barrett, “Advanced Engineering Mathematics” (McGraw-Hill, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeTeresa, S.J., Porter, R.S. & Farris, R.J. A model for the compressive buckling of extended chain polymers. J Mater Sci 20, 1645–1659 (1985). https://doi.org/10.1007/BF00555268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00555268

Keywords

Navigation