Journal of Materials Science

, Volume 20, Issue 5, pp 1602–1615 | Cite as

Solution crystallization of polyethylene at high temperatures

Part 3 The fold lengths
  • S. J. Organ
  • A. Keller


Single crystals of polyethylene have been grown from solution in various solvents at temperatures between 70 and 120° C. This represents an overlap in crystallization conditions with those used for melt growth, where substantial isothermal thickening is known to occur during growth. The crystal thicknesses have been measured by Raman spectroscopy. Values of the equilibrium dissolution temperature and fold surface free energy are calculated for each solvent and the results analysed using the kinetic theory. Variations in crystal properties with time of crystallization are also investigated. A specific dependence of fold length on supercooling has been found to apply over the whole temperature range, consistent with predictions by the kinetic theories of crystallization in spite of changes in morphology which are incompatible with assumptions underlying the theoretical model. No evidence for isothermal thickening has been observed, except possibly for a small marginal effect at the highest temperature of 120° C investigated, over the same temperature range where melt crystallized material shows the effect prominently. Crystals grown at all temperatures displayed a rise in dissolution temperature with time which could be associated with an increase in surface perfection. All these findings have wider implications for our picture of polymer crystallization and crystal structure which are discussed here. A further, explicit, correlation with melt crystallization is deferred to a subsequent publication.


Crystallization Raman Spectroscopy Kinetic Theory Surface Free Energy Crystallization Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Organ andA. Keller,J. Mater. Sci. 20 (1985) 1571.Google Scholar
  2. 2.
    P. J. Barham, R. A. Chivers, D. A. Jarvis, J. Martinez-Salazar andA. Keller,J. Polym. Sci. Polym. Lett. Ed. 19 (1981) 539.Google Scholar
  3. 3.
    R. A. Chivers, J. Martinez-Salazar, P. J. Barham andA. Keller,ibid. 20 (1982) 1717.Google Scholar
  4. 4.
    P. J. Barham, D. A. Jarvis andA. Keller,ibid. 20 (1982) 1733.Google Scholar
  5. 5.
    J. Martinez-Salazar, P. J. Barham andA. Keller,J. Mater. Sci. 20 (1985) 1616.Google Scholar
  6. 6.
    P. J. Barham, R. A. Chivers, A. Keller, J. Martinez-Salazar andS. J. Organ,ibid. 20 (1985) 1625.Google Scholar
  7. 7.
    S. J. Organ andA. Keller,ibid. 20 (1985) 1586.Google Scholar
  8. 8.
    T. Kawai andA. Keller,Phil. Mag. 11 (1965) 1165.Google Scholar
  9. 9.
    J. D. Hoffman,Polymer 24 (1983) 3.Google Scholar
  10. 10.
    J. Rault,J. Macromol. Sci. B15 (1978) 567.Google Scholar
  11. 11.
    W. O. Statton andP. H. Geil,J. Appl. Polym. Sci. 3 (1960) 357.Google Scholar
  12. 12.
    J. D. Hoffman andJ. J. Weeks,J. Chem. Phys. 42 (1965) 4301.Google Scholar
  13. 13.
    J. Dlugosz, G. V. Fraser, D. Grubb, A. Keller, J. A. Odell andP. L. Goggin,Polymer 17 (1976) 471.Google Scholar
  14. 14.
    R. L. Cormia, F. P. Price andD. Turnbull,J. Chem. Phys. 37 (1962) 1333.Google Scholar
  15. 15.
    A. Nakajima, F. Hamada, S. Hayashi andT. Sumida,Kolloid Z: Z. Polym. 222 (1968) 10.Google Scholar
  16. 16.
    A. Nakajima, S. Hayashi, T. Korenaga andT. Sumida,ibid. 222 (1968) 124.Google Scholar
  17. 17.
    G. A. Bassett, D. C. Blundell andA. Keller,J. Macromol. Sci. B1 (1967) 161.Google Scholar
  18. 18.
    A. Keller andD. M. Sadler,ibid. B7 (1973) 263.Google Scholar
  19. 19.
    L. Mandelkern,J. Polym. Sci. Polym. Lett. Ed. 5 (1967) 557.Google Scholar
  20. 20.
    T. J. Weaver andI. R. Harrison,Polymer 22 (1981) 1590.Google Scholar
  21. 21.
    Y. Udagawa andA. Keller,J. Polym. Sci. A-2 9 (1971) 437.Google Scholar
  22. 22.
    G. V. Fraser,Indian J. Pure and Appl. Phys. 16 (1978) 344.Google Scholar
  23. 23.
    R. G. Snyder, S. J. Krause andJ. R. Scherer,J. Polym. Sci. Polym. Phys. Ed. 16 (1978) 1593.Google Scholar
  24. 24.
    R. G. Snyder andJ. R. Scherer,ibid. 18 (1980) 421.Google Scholar
  25. 25.
    C. M. Cormier andB. Wunderlich,J. Polym. Sci. A-2 4 (1966) 666.Google Scholar
  26. 26.
    J. D. Hoffman andJ. J. Weeks,J. Chem. Phys. 37 (1962) 1723.Google Scholar
  27. 27.
    T. W. Huseby andH. E. Bair,J. Appl. Phys. 39 (1968) 4969.Google Scholar
  28. 28.
    R. A. Chivers, PhD thesis, Bristol University (1981).Google Scholar
  29. 29.
    A. J. Kovacs, A. Gonthier andC. Straupe,J. Polym. Sci. Polym. Symp. 50 (1975) 283.Google Scholar
  30. 30.
    D. M. Sadler,Polymer 24 (1983) 1401.Google Scholar
  31. 31.
    D. M. Sadler andG. H. Gilmer,ibid. 25 (1984) 1446.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • S. J. Organ
    • 1
  • A. Keller
    • 1
  1. 1.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK

Personalised recommendations