Skip to main content
Log in

Solution crystallization of polyethylene at high temperatures

Part 3 The fold lengths

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single crystals of polyethylene have been grown from solution in various solvents at temperatures between 70 and 120° C. This represents an overlap in crystallization conditions with those used for melt growth, where substantial isothermal thickening is known to occur during growth. The crystal thicknesses have been measured by Raman spectroscopy. Values of the equilibrium dissolution temperature and fold surface free energy are calculated for each solvent and the results analysed using the kinetic theory. Variations in crystal properties with time of crystallization are also investigated. A specific dependence of fold length on supercooling has been found to apply over the whole temperature range, consistent with predictions by the kinetic theories of crystallization in spite of changes in morphology which are incompatible with assumptions underlying the theoretical model. No evidence for isothermal thickening has been observed, except possibly for a small marginal effect at the highest temperature of 120° C investigated, over the same temperature range where melt crystallized material shows the effect prominently. Crystals grown at all temperatures displayed a rise in dissolution temperature with time which could be associated with an increase in surface perfection. All these findings have wider implications for our picture of polymer crystallization and crystal structure which are discussed here. A further, explicit, correlation with melt crystallization is deferred to a subsequent publication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Organ andA. Keller,J. Mater. Sci. 20 (1985) 1571.

    Google Scholar 

  2. P. J. Barham, R. A. Chivers, D. A. Jarvis, J. Martinez-Salazar andA. Keller,J. Polym. Sci. Polym. Lett. Ed. 19 (1981) 539.

    Google Scholar 

  3. R. A. Chivers, J. Martinez-Salazar, P. J. Barham andA. Keller,ibid. 20 (1982) 1717.

    Google Scholar 

  4. P. J. Barham, D. A. Jarvis andA. Keller,ibid. 20 (1982) 1733.

    Google Scholar 

  5. J. Martinez-Salazar, P. J. Barham andA. Keller,J. Mater. Sci. 20 (1985) 1616.

    Google Scholar 

  6. P. J. Barham, R. A. Chivers, A. Keller, J. Martinez-Salazar andS. J. Organ,ibid. 20 (1985) 1625.

    Google Scholar 

  7. S. J. Organ andA. Keller,ibid. 20 (1985) 1586.

    Google Scholar 

  8. T. Kawai andA. Keller,Phil. Mag. 11 (1965) 1165.

    Google Scholar 

  9. J. D. Hoffman,Polymer 24 (1983) 3.

    Google Scholar 

  10. J. Rault,J. Macromol. Sci. B15 (1978) 567.

    Google Scholar 

  11. W. O. Statton andP. H. Geil,J. Appl. Polym. Sci. 3 (1960) 357.

    Google Scholar 

  12. J. D. Hoffman andJ. J. Weeks,J. Chem. Phys. 42 (1965) 4301.

    Google Scholar 

  13. J. Dlugosz, G. V. Fraser, D. Grubb, A. Keller, J. A. Odell andP. L. Goggin,Polymer 17 (1976) 471.

    Google Scholar 

  14. R. L. Cormia, F. P. Price andD. Turnbull,J. Chem. Phys. 37 (1962) 1333.

    Google Scholar 

  15. A. Nakajima, F. Hamada, S. Hayashi andT. Sumida,Kolloid Z: Z. Polym. 222 (1968) 10.

    Google Scholar 

  16. A. Nakajima, S. Hayashi, T. Korenaga andT. Sumida,ibid. 222 (1968) 124.

    Google Scholar 

  17. G. A. Bassett, D. C. Blundell andA. Keller,J. Macromol. Sci. B1 (1967) 161.

    Google Scholar 

  18. A. Keller andD. M. Sadler,ibid. B7 (1973) 263.

    Google Scholar 

  19. L. Mandelkern,J. Polym. Sci. Polym. Lett. Ed. 5 (1967) 557.

    Google Scholar 

  20. T. J. Weaver andI. R. Harrison,Polymer 22 (1981) 1590.

    Google Scholar 

  21. Y. Udagawa andA. Keller,J. Polym. Sci. A-2 9 (1971) 437.

    Google Scholar 

  22. G. V. Fraser,Indian J. Pure and Appl. Phys. 16 (1978) 344.

    Google Scholar 

  23. R. G. Snyder, S. J. Krause andJ. R. Scherer,J. Polym. Sci. Polym. Phys. Ed. 16 (1978) 1593.

    Google Scholar 

  24. R. G. Snyder andJ. R. Scherer,ibid. 18 (1980) 421.

    Google Scholar 

  25. C. M. Cormier andB. Wunderlich,J. Polym. Sci. A-2 4 (1966) 666.

    Google Scholar 

  26. J. D. Hoffman andJ. J. Weeks,J. Chem. Phys. 37 (1962) 1723.

    Google Scholar 

  27. T. W. Huseby andH. E. Bair,J. Appl. Phys. 39 (1968) 4969.

    Google Scholar 

  28. R. A. Chivers, PhD thesis, Bristol University (1981).

  29. A. J. Kovacs, A. Gonthier andC. Straupe,J. Polym. Sci. Polym. Symp. 50 (1975) 283.

    Google Scholar 

  30. D. M. Sadler,Polymer 24 (1983) 1401.

    Google Scholar 

  31. D. M. Sadler andG. H. Gilmer,ibid. 25 (1984) 1446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Organ, S.J., Keller, A. Solution crystallization of polyethylene at high temperatures. J Mater Sci 20, 1602–1615 (1985). https://doi.org/10.1007/BF00555263

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00555263

Keywords

Navigation