Skip to main content
Log in

Observations on the fracture and deformation behaviour during annealing of residually stressed polycrystalline aluminium oxides

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly residually stressed polycrystalline aluminium oxides were found to exhibit residual stress relaxation, as evidenced by changes in load-bearing ability, at temperatures as low as about 850° C. This temperature is much too low for such relaxation to occur by dislocation, Nabarro—Herring or Coble creep. Irreversible changes in specimen dimension coupled with SEM-fractography revealed that the stress relaxation resulted from creep by intergranular cavitation and crack propagation. In one aluminium oxide, such cavitation and crack propagation appeared to take place in a stable mode along a viscous glassy grain boundary phase. In high-purity fine-grained aluminium oxide, crack propagation occurred in a frequently totally catastrophic and highly unstable manner. This latter material was also observed to exhibit spontaneous fatigue during isothermal anneal. Implications of the findings of this study for the use of thermal anneals to promote residual stress relaxation in structural ceramic materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Cockbain,Proc. Brit. Ceram. Soc. 25 (1975) 253.

    Google Scholar 

  2. A. Yu Malinin, V. S. Papkov, V. D. Chumak andA. P. Vidanov,Iz. Akad. Nank SSSR Ser. Fiz. 37 (1973) 2367.

    Google Scholar 

  3. H. P. Kirchner, “Strengthening of Ceramics” (Marcel Dekker, Inc., New York, 1979).

    Google Scholar 

  4. F. I. Baratta,Bull. Amer. Ceram. Soc. 57 (1978) 806.

    Google Scholar 

  5. R. C. Pohanka, R. W. Rice andB. E. Walker Jr,J. Amer. Ceram. Soc. 59 (1976) 71.

    Google Scholar 

  6. W. Kerstan,Sprechsaal 113 (1980) 54.

    Google Scholar 

  7. R. Gardon andO. S. Narayanaswamy,J. Amer. Ceram. Soc. 53 (1970) 380.

    Google Scholar 

  8. A. R. Cooper andD. A. Krohn,ibid. 52 (1969)665.

    Google Scholar 

  9. A. J. Durelli andW. F. Riley, “Introduction to Photomechanics” (Prentice-Hall, Englewood Cliffs, NJ, 1965).

    Google Scholar 

  10. B. D. Cullity, “Elements of X-Ray Diffraction”, (Addison-Wesley Pub. Co., Reading Massachusetts, 1956).

    Google Scholar 

  11. P. J. Noronha andJ. J. Wert,J. Testing Eval. 3 (1975) 147.

    Google Scholar 

  12. L. Grabner,J. Appl. Phys. 49 (1978) 580.

    Google Scholar 

  13. C. P. Chen, private communication (1980).

  14. E. A. Fisher, in “Proceedings of the Workshop, Non-destructive Evaluation of Residual Stress”, San Antonio, Texas, August 1975 (NTIAC Publications, San Antonio, Texas, 1975) p. 125.

    Google Scholar 

  15. C. C. Hsiao, “Fracture 1977” Vol. 3 (ICF4, Waterloo, Canada, June 1977).

  16. D. P. H. Hasselman, personal observation.

  17. F. R. N. Nabarro, “Report on a Conference on the Strength of Solids”, (Physics Society, London 1948) p. 75.

    Google Scholar 

  18. C. Herring,J. Appl. Phys. 21 (1950) 437.

    Google Scholar 

  19. R. L. Coble,ibid. 34 (1963) 1679.

    Google Scholar 

  20. D. A. Krohn, P. A. Urick, D. P. H. Hasselman andT. G. Langdon,ibid. 45 (1974) 3729.

    Google Scholar 

  21. A. Venkateswaran andD. P. H. Hasselman,J. Mater. Sci. 16 (1981) 1627.

    Google Scholar 

  22. J. Weertman,Trans. ASM 62 (1969) 502.

    Google Scholar 

  23. J. F. Lynch, C. G. Ruderer andW. H. Duckworth, “Engineering Properties of Selected Ceramic Materials” (American Ceramic Society Inc., 1966).

  24. R. J. Fields andM. F. Ashby,Phil. Mag. 33 (1976) 33.

    Google Scholar 

  25. D. R. Clarke, in Materials Science Research, Vol. 14, Surfaces and Interfaces in Ceramic and Ceramic Metal Systems, edited by J. A. Pask and A. G. Evans (Plenum Press, New York, 1981) p. 307.

    Google Scholar 

  26. D. P. H. Hasselman,J. Amer. Ceram. Soc. 52 (1969) 600.

    Google Scholar 

  27. A. G. Evans,Acta. Met. 28 (1980) 1155.

    Google Scholar 

  28. K. Kromp andR. F. Pabst,Met. Sci. 15 (1981) 125.

    Google Scholar 

  29. T. J. Chuang andJ. R. Rice,Acta Met. 21 (1973) 1625.

    Google Scholar 

  30. A. G. Evans, M. Linzer andL. R. Russell,Mater. Sci. Eng. 15 (1974) 253.

    Google Scholar 

  31. “Fracture Mechanics of Ceramics” Vols. 1, 2, 3 and 4, edited by R. C. Bradt, F. F. Lange and D. P. H. Hasselman (Plenum Press, New York, 1974, 1978).

    Google Scholar 

  32. T. G. Langdon andF. A. Mohamed,J. Mater. Sci. 13 (1978) 473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tree, Y., Venkateswaran, A. & Hasselman, D.P.H. Observations on the fracture and deformation behaviour during annealing of residually stressed polycrystalline aluminium oxides. J Mater Sci 18, 2135–2148 (1983). https://doi.org/10.1007/BF00555008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00555008

Keywords

Navigation