Advertisement

Journal of Materials Science

, Volume 18, Issue 7, pp 2063–2070 | Cite as

Evaluation of microstructural instability during the differential strain rate test of a superplastic alloy

  • B. P. Kashyap
  • G. S. Murty
Papers

Abstract

Stress (σ)-strain rate (\(\dot \varepsilon \)) data of banded and elongated grain microstructures of the Pb-Sn eutectic alloy were analysed over 298 to 443 K to evaluate microstructural instability during differential strain rate tests in the superplastic region. With reference to a stable equiaxed microstructure exhibiting uniqueσ-\(\dot \varepsilon \) relation, banded structure is more susceptible to strain hardening while the elongated grain microstructure exhibits either strain softening or strain hardening depending on the test temperature. This flow behaviour is considered in terms of a change in grain size, represented by the cube root of the grain volume. Activation energy for grain growth calculated from the differential strain rate test data indicates that the activation energy depends on strain rate and type of microstructure.

Keywords

Polymer Grain Size Microstructure Activation Energy Test Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Suery andB. Baudelet,Rev. Phys. Appl. 13 (1978) 53.Google Scholar
  2. 2.
    B. P. Kashyap andG. S. Murty,Met. Trans. 13A (1982) 53.Google Scholar
  3. 3.
    Idem, ibid. 12A (1981) 1923.Google Scholar
  4. 4.
    Idem, Trans. JIM 22 (1981) 258.Google Scholar
  5. 5.
    Idem, Mater. Sci. Eng. 50 (1981) 205.Google Scholar
  6. 6.
    B. P. Kashyap, PhD thesis, Indian Institute of Technology, Kanpur (1980).Google Scholar
  7. 7.
    M. Suery andB. Baudelet,J. Mater. Sci. 8 (1973) 363.Google Scholar
  8. 8.
    F. Schuckher, in “Quantitative Microscopy” (McGraw-Hill Book Company, New York, 1968) p. 201.Google Scholar
  9. 9.
    W. D. Nix,Met. Forum 4 (1981) 38.Google Scholar
  10. 10.
    B. P. Kashyap andA. K. Mukherjee,Scripta Metall. 16 (1982) 541.Google Scholar
  11. 11.
    F. Haessner andS. Hofmann, in “Recrystallization of Metallic Materials” (Dr. Riedeien Verlag GmbH, Stuttgart, 1978) p. 63.Google Scholar
  12. 12.
    C. J. Smithells, in “Metals Reference Book” Vol. 2 (Plenum Press, New York, 1967) p. 637.Google Scholar
  13. 13.
    H. Gleiter andB. Chalmers, in “Progress in Materials Science” Vol. 16 (Pergamon Press, Oxford, 1972) p. 185.Google Scholar
  14. 14.
    J. P. Poirier,Acta Metall. 26 (1978) 629.Google Scholar
  15. 15.
    J. Weertman,Trans. AIME 218 (1960) 207.Google Scholar
  16. 16.
    C. J. Simpson, W. C. Winegard andK. T. Aust, in “Grain Boundary Structure and Properties” (Academic Press, London, 1976) p. 201.Google Scholar
  17. 17.
    K. T. Aust andJ. W. Rutter,Trans. AIME 215 (1959) 119, 820.Google Scholar
  18. 18.
    J. W. Rutter andK. T. Aust,ibid. 218 (1960) 682.Google Scholar
  19. 19.
    C. J. Simpson, K. T. Aust andW. C. Winegard,Met. Trans. 2 (1971) 987.Google Scholar
  20. 20.
    G. K. Maliseva, V. I. Puzakov, S. V. Zemski andV. A. Karpelev,Izv. Vyssh Uchehn Zaved Tsveln. Metall. 3 (1980) 1007.Google Scholar
  21. 21.
    S. W. Zehr andW. A. Backofen,Trans. ASM 61 (1968) 300.Google Scholar
  22. 22.
    M. A. Clark andT. H. Alden,Acta Metall. 21 (1973) 1195.Google Scholar
  23. 23.
    H. W. Hayden andJ. H. Brophy,Trans. ASM 61 (1968) 542.Google Scholar
  24. 24.
    K. A. Padmanabhan, M. D. C. Moles andG. J. Davies,J. Mater. Sci. 12 (1977) 632.Google Scholar
  25. 25.
    R. G. Menzies, J. W. Edington andG. J. Davies,Met. Sci. 15 (1981) 210.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • B. P. Kashyap
    • 1
  • G. S. Murty
    • 1
  1. 1.Department of Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations