Journal of Materials Science

, Volume 18, Issue 7, pp 2011–2016 | Cite as

Chemical preparation of ultra-fine aluminium nitride by electric-arc plasma

  • G. P. Vissokov
  • L. B. Brakalov
Papers

Abstract

Ultra-fine aluminium nitride has been obtained by interaction of aluminium and nitrogen in electric-arc plasmA. It has been proved that the rate determining step of the process is the evaporation of the aluminium powder. The most appropriate thermodynamic and kinetic conditions for obtaining pure, finely dispersed product has been determined. The prepared aluminium nitride has dimensions of about 50 nm and specific surface of up to 100 m2g−1. The items made by the baking of this product at 1600 K have zero porosity. The product has a greater chemical reactivity than the one producted by conventional methods.

Keywords

Nitrogen Polymer Aluminium Porosity Evaporation 

Nomenclature

a

weight content of nitrogen in the product (%)

cp

specific heat of the particle (J kg−1 K−1)

dp

particle diameter (m)

dp0

initial particle diameter (m)

Gp

current particle weight (kg)

Gp0

initial particle weight (kg)

Lpb

particle melting heat (J kg−1)

Lpv

particle evaporation heat (J kg−1)

Mg

molecular weight of the gas

Mp

molecular weight of the particle

Pg

gas pressure (Pa)

Pv

vapour pressure of the particle (Pa)

S

specific surface (m2 g−1)

Sc

course of the particle (m)

sp

coefficient of friction resistance of the particle

Tg

gas temperature (K)

Tp

particle temperature (K)

Tg0

mean temperature of the reactor (K)

Tpb

particle melting point (K)

Tpv

particle evaporation temperature (K)

υg

rate of the gas (m sec−1)

α

degree of nitride formation (%)

αT

heat transfer coefficient between the gas and the particle (W m−2 K−1)

αv

evaporation coefficient (1 in this case)

β

degree of evaporation (%)

Δτb

time for particle melting (sec)

ρg

density of the gas (kg m−3)

ρp

density of the particle (kg m−3)

ρpl

density of the particle in liquid state (kg m−3)

σgv

mean diameter of the molecule in the gas—vapour system (m)

τb

the time for which the particle reaches melting point (sec)

τr

relative residence time

τv

time necessary for the full evaporation of the particle (sec)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Samsonov, O. P. Koulik andS. V. Polishtchuk, “Polutchenie i Metoduy Analoza Nitridov” (Naoukova dumka, Kiev, 1978) p. 360.Google Scholar
  2. 2.
    A. N. Krasnov andV. M. Sleptzov,Poroshkovaya Metallurgiya 5 (1965) 79.Google Scholar
  3. 3.
    O. Matsumoto, Y. Shirato andT. Miyazaki,J. Electrochem. Soc. Jpn. 36 (1968) 207.Google Scholar
  4. 4.
    O. Matsumoto, Y. Shirato andY. Hayakava,ibid. 37 (1969) 151.Google Scholar
  5. 5.
    G. L. Long andJ. Foster,J. Amer. Ceram. Soc. 42 (1959) 53.Google Scholar
  6. 6.
    S. Veprek, C. Brendel andH. Schater,Z. Naturforsch. 24a (1969) 2025.Google Scholar
  7. 7.
    V. M. Zake, V. E. Liepinya, V. K. Melnikov, T. N. Miller andU. A. Zielen,Izv. AN Latv. SSR, Serya Fiz. Techn. Naouk 22 (1970) 73.Google Scholar
  8. 8.
    A. A. Asheoulov, M. G. Berditchevskij, F. M. Kuzmenkova, V. A. Sidorov, S. A. Bourenkov, G. V. Kurtoukov, A. A. Kornilov andV. V. Marousin, “Nizkotemperaturnaya Plasma v Technologii Neorganitcheskih Veshchestv” (Naouka, Novosirirsk, 1971) p. 25.Google Scholar
  9. 9.
    Japanese patent No. 75 499/73 (1973).Google Scholar
  10. 10.
    T. Sato andM. Itawa,Nippon Kagaku Kaishi 15 (1973) 1869.Google Scholar
  11. 11.
    A. M. Svidounovitch, V. V. Petchkovskij, F. M. Kuzmenkova, V. A. Sidorov andS. A. Bourenkov,Voprosuy Himii i Himicheskoi Technologii 40 (1975) 148.Google Scholar
  12. 12.
    D. P. Zetkevitch andN. V. Zahojij, “Materialuy i Izdeliya Poloutchaemuye Metodam Poroshkovoj Metallourgii” (Naoukova dumka, Kiev, 1975) p. 78.Google Scholar
  13. 13.
    D. P. Zetkevitch, Y. P. Grabis, G. N. Makarenko, T. Y. Kosolapova andT. N. Miller,Poroshkovaya Metallurgiya 17 (1977) 1.Google Scholar
  14. 14.
    Yu. N. Mamontov, A. L. Souris andS. N. Shorin, Sb. “II Vsesoyuznuy Simpozium Po Plasmohimii”, t. Vol. 2, tezisuy dokladov, (Zinatne, Riga, 1975) p. 186.Google Scholar
  15. 15.
    L. P. Rouzinov andB. S. Goulenitzki, “Ravnovesnuye Prevrashcheniya v Metallurgicheskih Reaktziyah”, (Naouka, Moscow, 1975).Google Scholar
  16. 16.
    D. M. Tchizhikov, Yu. M. Tzvetkov andI. K. Tagirov, Sb. “Termodinamika i Kinetika v Protzessov Vosstanovleniya Metallov” (Naouka, Moscow, 1972) p. 7.Google Scholar
  17. 17.
    S. A. Panfilov, I. K. Tagirov andYu. V. Tzvetkov, Sb. “Generatoruy Nizkotemperaturnoy Plazmuy” (Energiya, Moscow, 1969) p. 48.Google Scholar
  18. 18.
    D. M. Tchizhikov, Yu. V. Tzvetkov andI. K. Tagirov, Sb. “Mehanizm i Kinetika Vosstanovleniya Metallov” (Naouka, Moscow, 1970) p. 49.Google Scholar
  19. 19.
    Yu. V. Tzvetkov andS. A. Panfilov, “Nizkotemperaturnaya Plazma v Protzessach Vosstanovleniya” (Naouka, Moscow, 1980) p. 146.Google Scholar
  20. 20.
    L. F. Shampine, H. A. Watts andS. M. Davenport,SIAM Rev. 18 (1976) 376.Google Scholar
  21. 21.
    E. Fehlberg,Computing 6 (1970) 61.Google Scholar
  22. 22.
    A. Klyatchko-Gourvitch,Izv. AN SSSR OHN 35 (1961) 1884.Google Scholar
  23. 23.
    G. P. Vissokov, K. D. Manolova andL. B. Brakalov,J. Mater. Sci. 16 (1981) 1716.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • G. P. Vissokov
    • 1
  • L. B. Brakalov
    • 1
  1. 1.Higher Institute of Chemical TechnologySofiaBulgaria

Personalised recommendations