Advertisement

Journal of Materials Science

, Volume 18, Issue 7, pp 1999–2010 | Cite as

Imaging of polyethylene films by diffraction contrast

  • V. P. Chacko
  • W. W. Adams
  • E. L. Thomas
Papers

Abstract

The technique of crystalline diffraction contrast imaging of lamellae in spherulitic and oriented thin films of polyethylene is illustrated for both conventional transmission and scanning transmission electron microscopY. Bright-field “ghost” imaging permits real space crystallography of the specimen and reveals the occurrence of variable chain inclination in a given lamellar preparation. N beam annular dark-field scanning transmission microscopy is useful for distinguishing between curved lamellae and mosaic blocks as well as for the direct imaging of the amorphous regions between lamellae.

Keywords

Ghost Real Space Amorphous Region Scanning Transmission Electron microscopY Direct Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. T. Grubb,J. Mater. Sci. 9 (1974) 1715.Google Scholar
  2. 2.
    G. Kanig,Kolloid Z. Z. Polymere 251 (1973) 782.Google Scholar
  3. 3.
    D. C. Bassett andA. M. Hodge,Proc. Roy. Soc. (Lond.) A359 (1978) 121.Google Scholar
  4. 4.
    I. G. Voigt-Martin, E. W. Fischer, L. Mandelkern,J. Polymer Sci. (Phys) 18 (1980) 2347.Google Scholar
  5. 5.
    D. T. Grubb andA. Keller,ibid. 18 (1980) 207.Google Scholar
  6. 6.
    N. Stribeck, PhD Dissertation, University of Marburg (1980).Google Scholar
  7. 7.
    A. Low, D. Vesely, P. Allan andM. Bevis,J. Mater. Sci. 13 (1978) 711.Google Scholar
  8. 8.
    E. S. Sherman andE. L. Thomas,ibid. 14 (1979) 1109.Google Scholar
  9. 9.
    E. S. Sherman, W. W. Adams andE. L. Thomas,ibid. 16 (1981) 1.Google Scholar
  10. 10.
    V. P. Chacko, F. E. Karasz, R. J. Farris andE. L. Thomas,J. Polymer Sci. (Phys.) 20 (1982) 2177.Google Scholar
  11. 11.
    J. Petermann andR. M. Gohil,J. Mater. Sci. 14 (1979) 2260.Google Scholar
  12. 12.
    A. W. Agar, F. C. Frank andA. Keller,Phil. Mag. 4 (1959) 32.Google Scholar
  13. 13.
    C. E. Hall, “Introduction to Electron Microscopy” 2nd edn. (McGraw Hill, New York, 1966).Google Scholar
  14. 14.
    A. J. Lovinger andH. D. Keith,J. Polymer. Sci. (Phys.) 19 (1981) 1163.Google Scholar
  15. 15.
    A. Keller,Rep. Prog. Phys. 31 (1969) 623.Google Scholar
  16. 16.
    J. Dlugosz, G. V. Fraser, D. T. Grubb, A. Keller, J. A. Odell andP. L. Goggin,Polymer 17 (1916) 411.Google Scholar
  17. 17.
    I. G. Voigt-Martin, L. Mandelkern andE. W. Fischer, Proceedings of 28th IUPAC Macromolecular Symposium (Amherst, USA), Vol. 21 (1982).Google Scholar
  18. 18.
    D. L. Handlin andE. L. Thomas, unpublished results (1982).Google Scholar
  19. 19.
    J.-F. Revol, W. Luk andR. H. Marchessault,J. Crystal Growth 48 (1980) 240.Google Scholar
  20. 20.
    R. Hosemann, W. Wilke andF. J. Baltàcalleja,Acta Crystallogr. 21 (1966) 118.Google Scholar
  21. 21.
    D. Yang andE. L. Thomas, to be published.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • V. P. Chacko
    • 1
  • W. W. Adams
    • 1
  • E. L. Thomas
    • 1
  1. 1.Polymer Science and Engineering DepartmentUniversity of MassachusettsAmherstUSA

Personalised recommendations