Journal of Materials Science

, Volume 18, Issue 7, pp 1941–1946 | Cite as

Swelling of slightly annealed doubly oriented samples of nylon-11

Part 1 Modification of macroscopic dimensions and long spacing
  • M. Dosiere


Doubly oriented samples of nylon-11 obtained by unidirectional rolling and annealed in formic acid in the temperature range 25 to 76° C have been swollen in allylic alcohol at room temperature. Reversible modifications of the macroscopic lengthY and of the long spacingdy have been observed although the X-ray and the macroscopic swelling ratios differ significantly. A schematic model with lamellar regions arranged “in series” with “non-lamellar regions” allows one to explain the discrepancy between both the swelling ratios.


Polymer Alcohol Formic Acid Schematic Model Reversible Modification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. G. Cannon,Mikrochim. Acta 2 (1955) 555.Google Scholar
  2. 2.
    M. Dosiere andJ. J. Point,J. Polym. Sci. Polym. Phys. Ed. submitted.Google Scholar
  3. 3.
    A. Keller andY. Udagawa,J. Polym. Sci. A2 (1971) 437.Google Scholar
  4. 4.
    A. Keller andD. P. Pope,J. Mater. Sci. 6 (1971) 453.Google Scholar
  5. 5.
    I. L. Hay andA. Keller,J. Mater. Sci. 2 (1967) 538.Google Scholar
  6. 6.
    J. J. Point, M. Gilliot, M. Dosiere andA. Goffin,J. Polym. Sci. C32 (1972) 261.Google Scholar
  7. 7.
    A. Goffin, M. Dosiere, J. J. Point andM. Gilliot,J. Polym. Sci. C32 (1972) 135.Google Scholar
  8. 8.
    M. Dosiere andJ. J. Point,J. Polym. Sci. Polym. Phys. Ed. submitted.Google Scholar
  9. 9.
    P. Dreyfuss andA. Keller,J. Macromol. Sci. B4 (1970) 811.Google Scholar
  10. 10.
    P. Dreyfuss,J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 201.Google Scholar
  11. 11.
    G. Hinrichsen,Makromol. Chem. 166 (1973) 291.Google Scholar
  12. 12.
    A. Gabriel andY. Dupont,Rev. Sci. Instr. 43 (1972) 1600.Google Scholar
  13. 13.
    D. S. Barmby andG. King, Proceedings of Int. Wool Text. Res. Conference, Melbourne, B, (1955) p. 139.Google Scholar
  14. 14.
    M. V. Forward andH. J. Palmer,J. Textile Res. 45 (1954) T510.Google Scholar
  15. 15.
    K. Little,Brit. J. Appl. Phys. 10 (1959) 225.Google Scholar
  16. 16.
    J. Descamps-Carlier, G. A. Homes andJ. J. Point,Makromol. Chem. 109 (1967) 1.Google Scholar
  17. 17.
    E. Ergoz, L. Mandelkern,J. Polym. Sci. Polym, Lett. Ed. 10 (1972) 631.Google Scholar
  18. 18.
    D. P. Pope andA. Keller,J. Polym. Sci. Polym. Phys. Ed. 13 (1975) 633.Google Scholar
  19. 19.
    Idem, J. Mater. Sci. 9 (1974) 920.Google Scholar
  20. 20.
    H. Mitomo, K. Nakazato andI. Kuriyama,J. Polym. Sci. Polym. Phys. Ed. 15 (1977) 915.Google Scholar
  21. 21.
    H. Mitomo, K. Nakazato andI. Kuriyama,Polymer 19 (1978) 1427.Google Scholar
  22. 22.
    J. K. Addy andR. D. Andrews,Macromolecules 6 (1973) 791.Google Scholar
  23. 23.
    Idem, ibid. 11 (1978) 1283.Google Scholar
  24. 24.
    G. V. Fraser, A. Keller, E. J. George andD. Dreyfuss,J. Macromol. Sci. B16 (1979) 295.Google Scholar
  25. 25.
    D. R. Subramanian andA. Venkataraman,ibid. B18 (1980) 177.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • M. Dosiere
    • 1
  1. 1.Service de Chimie-Physique et ThermodynamiqueUniversité de l'Etat a MonsMonsBelgium

Personalised recommendations