Biochemical Genetics

, Volume 28, Issue 1–2, pp 41–56 | Cite as

Biochemical genetic markers of squirrel monkeys and their use for pedigree validation

  • John L. VandeBerg
  • Mary Jo Aivaliotis
  • Lawrence E. Williams
  • Christian R. Abee


Family data for 14 biochemical genetic markers of squirrel monkeys (genusSaimiri) were derived from 73 pedigreed progeny and both parents of each, as well as from 16 additional progeny and one parent of each. The data for each marker and the phenotypic patterns were consistent with autosomal codominant inheritance. It was concluded from the genetic marker data that the pedigree records of seven progeny were incorrect. Retrospective investigations of colony records followed by typing of animals that might possibly have been a parent enabled five of the pedigree records to be corrected. Although five of the pedigree errors were cases of mistaken paternity, the other two apparently were the consequence of infant swapping between dams shortly after birth. Because squirrel monkeys exhibit a high degree of allomaternal behavior, infant swapping between dams may occur more frequently than in many other nonhuman primate species.

Key words

isozymes polymorphisms paternity maternity pedigree Saimiri 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abee, C. R. (1989). The squirrel monkey in biomedical research.ILAR News 31(1):11.Google Scholar
  2. Budowle, B. (1984). Rapid electrofocusing of erythrocyte acid phosphatase.Electrophoresis 5254.Google Scholar
  3. Cheng, M.-L., and VandeBerg, J. L. (1987). Cryopreservation of erythrocytes in small aliquots for enzyme electrophoresis.Biochem. Genet. 25535.Google Scholar
  4. Cheng, M.-L., Woodford, S. C., Hilburn, J. L., and VandeBerg, J. L. (1986). A novel system for storage of sera frozen in small aliquots.J. Biochem. Biophys. Meth. 1347.Google Scholar
  5. Clayton, J. W., and Tretiak, D. N. (1972). Amine-citrate buffers for pH control in starch gel electrophoresis.J. Fish. Res. Bd. Can. 291169.Google Scholar
  6. Curie-Cohen, M., Yoshihara, D., Luttrell, L., Benforado, K., MacCluer, J. W., and Stone, W. H. (1983). The effects of dominance on mating behavior and paternity in a captive troop of rhesus monkeys (Macaca mulatta).Am. J. Primatol. 5127.Google Scholar
  7. Duvall, S. W., Bernstein, I. S., and Gordon, T. P. (1976). Paternity and status in a rhesus monkey group.J. Reprod. Fert. 4725.Google Scholar
  8. Harris, H., and Hopkinson, D. A. (1976).Handbook of Enzyme Electrophoresis in Human Genetics North-Holland, Amsterdam.Google Scholar
  9. Moore, C. M., Harris, C. P., and Abee, C. R. (1990). Distribution of chromosomal polymorphisms in species and subspecies of squirrel monkeys (genusSaimiri).Cytogenet. Cell Genet. (in press).Google Scholar
  10. Radola, B. J. (1980). Ultrathin-layer isoelectric focusing in 50–100 µm polyacrylamide gels on silanized glass plates or polyester films.Electrophoresis 143.Google Scholar
  11. Rudolph, N. S., and VandeBerg, J. L. (1980). Restriction of PGK-B to spermatogenic cells: Evidence from experimentally cryptorchid mice.Dev. Genet. 1341.Google Scholar
  12. Samollow, P. B., Ford, A. L., and VandeBerg, J. L. (1987). X-linked gene expression in the Virginia opossum: Differences between the paternally derivedGpd andPgk-A loci.Genetics 115185.Google Scholar
  13. Schaal, B. A., and Anderson, W. W. (1974). An outline of techniques for starch gel electrophoresis of enzymes from the American oysterCrassostrea virginica Gmelin. Technical Report of the Georgia Marine Science Center, No. 74-3.Google Scholar
  14. Shaklee, J. B., Kepes, K. L., and Whitt, G. S. (1973). Specialized lactate dehydrogenase isozymes: The molecular and genetic basis for the unique eye and liver LDH's of teleost fishes.J. Exp. Zool. 185217.Google Scholar
  15. Silva, B. T. F. da, Sampaio, M. I. C., Schneider, H., Schneider, M. P. C., Villavicencio, H., Montoya, H., Encarnacion, F., and Salzano, F. M. (1987a). Genetic variability in two species ofSaimiri from Peruvian Amazonia.Int. J. Primatol. 8528 (361) (abstr.).Google Scholar
  16. Silva, B. T. F. da, Sampaio, M. I. C., Schneider, M. P. C., Schneider, H., Villavicencio, H., Montoya, H., Encarnacion, F., and Salzano, F. M. (1987b). Preliminary analysis of genetic distance between squirrel monkeys.Int. J. Primatol. 8528 (361) (abstr.).Google Scholar
  17. VandeBerg, J. L., Cheng, M.-L., Moore, C. M., and Abee, C. (1987). Genetics of squirrel monkeys (genusSaimiri): Implications for taxonomy and research.Int. J. Primatol. 8423 (046) (abstr.).Google Scholar
  18. VandeBerg, J. L., Cheng, M.-L., Moore, C. M., and Abee, C. R. (1988). Genetic distances among squirrel monkey populations and taxonomic implications.Isozyme Bull. 21181 (abstr.).Google Scholar
  19. Williams, L. E., Abee, C. R., and Barnes, S. (1988). Allo-maternal behavior inSaimiri boliviensis.Am. J. Primatol. 14452 (abstr.).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • John L. VandeBerg
    • 1
  • Mary Jo Aivaliotis
    • 1
  • Lawrence E. Williams
    • 2
  • Christian R. Abee
    • 2
  1. 1.Department of GeneticsSouthwest Foundation for Biomedical ResearchSan Antonio
  2. 2.Department of Comparative MedicineUniversity of South AlabamaMobile

Personalised recommendations