Skip to main content
Log in

Estimating the hessian for gradient-type geometry optimizations

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Optimization methods that use gradients require initial estimates of the Hessian or second derivative matrix; the more accurate the estimate, the more rapid the convergence. For geometry optimization, an approximate Hessian or force constant matrix is constructed from a simple valence force field that takes into account the inherent connectivity and flexibility of the molecule. Empirical rules are used to estimate the diagonal force constants for a set of redundant internal coordinates consisting of all stretches, bends, torsions and out-of-plane deformations involving bonded atoms. The force constants are transformed from the redundant internal coordinates to Cartesian coordinates, and then from Cartesian coordinates to the non-redundant internal coordinates used in the specification of the geometry and optimization. This method is especially suitable for cyclic molecules. Problems associated with the choice of internal coordinates for geometry optimization are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pulay, P.: in Modern theoretical chemistry, Schaefer III, H. F. Ed., New York: Plenum 1977, Vol. 4

    Google Scholar 

  2. Schlegel, H. B.: Computational theoretical organic chemistry, Csizmadia, I. G., Daudel, R., Eds., Holland: Reidel 1981

    Google Scholar 

  3. Schlegel, H. B.: J. Comput. Chem.3, 214 (1982)

    Google Scholar 

  4. Fletcher, R.: in Numerical methods for unconstrained optimization, Murray, W. Ed., London: Academic Press 1972; Huang, H. Y.: J. Opt. Theory Appl.5, 405 (1970) and refs. cited therein.

    Google Scholar 

  5. Murtagh, B. A., Sargent, R. W.: Comput. J.13, 185 (1970)

    Google Scholar 

  6. Pople, J. A., Krishnan, R., Schlegel, H. B., Binkley, J. S.: Int. J. Quantum Chem. Symp.13, 225 (1979)

    Google Scholar 

  7. Wilson Jr., E. B., Decius, J. C., Cross, P. C.: Molecular vibrations, New York: McGraw-Hill 1955

    Google Scholar 

  8. Badger, R. M.: J. Chem. Phys.2, 128 (1934);3, 227 (1935)

    Google Scholar 

  9. See for example Chapter4 in Johnston, H. S.: Gas phase reaction rate theory. New York: Ronald Press 1966

    Google Scholar 

  10. Binkley, J. S., Whiteside, R. A., Krishnan, R., Seeger, R., DeFrees, D. J., Schlegel, H. B., Topiol, S., Kahn, L. R., Pople, J. A.: GAUSSIAN 80, QCPE13, 406 (1981)

    Google Scholar 

  11. Allinger, N. L., Yuh, Y. H.: MM2: Molecular mechanics II, QCPE13, 395 (1981)

    Google Scholar 

  12. Andose, J. D., Engler, E. E., Collins, J. B., Hummel, J. P., Mislow, K., Schleyer, P. v. R.: BIGSTRAIN: Empirical force field calculations, QCPE10, 348 (1978)

    Google Scholar 

  13. See for example: Stiff differential equations, Willoughby, R. A. Ed., New York: Plenum Press 1974; or any more recent text on numerical solutions of differential equations

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fellow of the Alfred P. Sloan Foundation, 1981–83

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhard Schlegel, H. Estimating the hessian for gradient-type geometry optimizations. Theoret. Chim. Acta 66, 333–340 (1984). https://doi.org/10.1007/BF00554788

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554788

Key words

Navigation