Skip to main content
Log in

Identification of a 130-kDa albumin in tuatara (Sphenodon) and detection of a novel albumin polymorphism

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Electrophoretic, immunochemical, and protein sequence analyses were performed on plasma albumin of the tuatara (Sphenodon), a rare reptile endemic to New Zealand. The analyses revealed that, unlike other terrestrial vertebrates, tuatara do not seem to possess a 60- to 75-kDa plasma albumin. The common form of plasma albumin in this genus has an apparent molecular mass of 130 kDa, making it by far the largest albumin reported for any terrestrial vertebrate. Starch gel electrophoresis of samples from tuatara on 24 of the 30 islands inhabited by this genus resolved two forms of the 130-kDa albumin (albumins A and C). A third albumin of approximately 170 kDa (albumin B), reflecting a novel alloalbuminemia, was found in tuatara in three geographically isolated populations. Albumin A appears to be restricted to populations at the southern extremity of the tuatara's distribution, while albumin C was found in all but four (southern) populations. Possible explanations for the origin and distribution of these albumins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F. W., Mitchell, N., Ryman, N., and Stahl, G. (1977). Isozyme loci in brown trout (Salmo trutta L.): Detection and interpretation from population data.Hereditas 86179.

    Google Scholar 

  • Arai, K., Ishioka, N., Huss, K., Madison, J., and Putnam, F. W. (1989a). Identical structural changes in inherited albumin variants from different populations.Proc. Natl. Acad. Sci. USA 86434.

    Google Scholar 

  • Arai, K., Madison, J., Huss, K., Ishioka, N., Satoh, C., Fujita, M., Neel, J. V., Sakurabayashi, I., and Putnam, F. W. (1989b). Point substitutions in Japanese alloalbumins.Proc. Natl. Acad. Sci. USA 866092.

    Google Scholar 

  • Arai, K., Madison, J., Shimizu, A., and Putnam, F. W. (1990). Point substitutions in albumin genetic variants from Asia.Proc. Natl. Acad. Sci. USA 87497.

    Google Scholar 

  • Beçak, W., Schwantes, A. R., and Schwantes, M. L. B. (1968). Polymorphism of albumin-like proteins in the South American tetraploid frogOdontophrynus americanus (Salientia: Ceratophrydidae).J. Exp. Zool. 168473.

    Google Scholar 

  • Behrens, P. Q., Spiekerman, A. M., and Brown, J. R. (1975). Structure of HSA.Fed. Proc. 34591.

    Google Scholar 

  • Bélanger, L., Roy, S., and Allard, D. (1994). New albumin gene 3′ adjacent to the α1-fetoprotein locus.J. Biol. Chem. 2695481.

    Google Scholar 

  • Bradshaw, R. A., and Peters, T., Jr. (1969). The amino acid sequence of peptide (1–24) of rat and human serum albumins.J. Biol. Chem. 2445582.

    Google Scholar 

  • Brennan, S. O., and Carrell, R. W. (1980). Functional abnormality of proalbumin Christchurch.Biochim. Biophys. Acta 62183.

    Google Scholar 

  • Brown, J. R. (1976). Structural origins of mammalian albumin.Fed. Proc. 352141.

    Google Scholar 

  • Brown, J. R., and Shockley, P. (1982). Serum albumin: Structure and characterization of its ligand binding sites. In Jost, P. C., and Griffith, O. H. (eds.),Lipid-Protein Interactions, Vol. 1 John Wiley and Sons, New York, pp. 25–68.

    Google Scholar 

  • Brown, M. A. (1993).Vitellogenesis in Tuatara (Sphenodon), Unpublished Ph.D. thesis, Victoria University of Wellington, Wellington, New Zealand.

    Google Scholar 

  • Brown, M. A., Cree, A., Chambers, G. K., and Newton, J. D. (1989). Techniques for detecting vitellogenesis in the tuataraSphenodon punctatus.N.Z. J. Zool. 1625.

    Google Scholar 

  • Byrnes, L., and Gannon, F. (1990). Atlantic salmon (Salmo salar) serum albumin: cDNA sequence, evolution, and tissue expression.DNA Cell Biol. 9647.

    Google Scholar 

  • Carter, D. C., and Ho, J. X. (1994). Structure of serum albumin.Adv. Protein Chem. 45153.

    Google Scholar 

  • Carter, D. C., He, X.-M., Munson, S. H., Twigg, P. D., Gernert, K. M., Broom, M. B., and Miller, T. Y. (1989). Three-dimensional structure of human serum albumin.Science 2441195.

    Google Scholar 

  • Cree, A., Guillette, L. J., Jr., Cockrem, J. F., Brown, M. A., and Chambers, G. K. (1990). Absence of daily cycles in plasma sex steroids in male and female tuatara (Sphenodon punctatus), and the effects of acute capture stress on females.Gen. Comp. Endocrinol. 79103.

    Google Scholar 

  • Daugherty, C. H., Cree, A., Hay, J. M., and Thompson, M. B. (1990). Neglected taxonomy and continuing extinctions of tuatara (Sphenodon).Nature 347177.

    Google Scholar 

  • De Morales, M. H., Vallés, A. M., and Baerga-Santini, C. (1987). Studies of the egg proteins of tropical lizards: Purification and partial characterization of yolk proteins ofAnolis pulchellus.Comp. Biochem. Physiol. 87B125.

    Google Scholar 

  • Dessauer, H. C. (1974). Plasma proteins of Reptilia. In Florkin, M., and Scheer, B. T. (eds.),Chemical Zoology, Vol. IX Academic Press, New York, pp. 187–216.

    Google Scholar 

  • Doolittle, R. F. (1984). Evolution of the plasma proteins. In Putnam, F. W. (ed.),The Plasma Proteins: Structure, Function, and Genetic Control, Vol. IV Academic Press, New York, pp. 317–360.

    Google Scholar 

  • Fraser, N. C. (1988). The osteology and relationships ofClevosaurus (Reptilia: Sphenodontida).Philos. Trans. R. Soc. Lond. B 321125.

    Google Scholar 

  • Fried, M., Jernigan, H. M., Jr., and LaMonda, G. W. (1975). Plasma albumin polymorphism in fowl. A system for the study of albumin biosynthesis and its control.Protides Biol. Fluids (Proc. Colloq.) 22465.

    Google Scholar 

  • Gavaud, J. (1986). Vitellogenesis in the lizardLacerta vivipara Jacquin 1. Purification and partial characterisation of plasma vitellogenin.Gen. Comp. Endocrinol. 631.

    Google Scholar 

  • Gitlin, D., and Gitlin, J. D. (1975). Genetic alterations in the plasma proteins of man. In Putnam, F. W. (ed.),The Plasma Proteins: Structure, Function, and Genetic Control, Vol. IV Academic Press, New York, pp. 321–374.

    Google Scholar 

  • Gray, J. E., and Doolittle, R. F. (1992). Characterization, primary structure, and evolution of lamprey plasma albumin.Protein Sci. 1289.

    Google Scholar 

  • Guttman, S., and Wilson, K. G. (1973). Genetic variation in the genus Bufo I. An extreme degree of transferrin and albumin polymorphism in a population of the american toad (Bufo americunus).Biochem. Genet. 8329.

    Google Scholar 

  • Hayward, B. W. (1986). Origin of the offshore islands of northern New Zealand and their landform development. In Wright, A. E., and Beever, R. E. (eds.),The Offshore Islands of Northern New Zealand, N.Z. Department of Lands and Survey Information Series 16, pp. 129–138.

  • Hedges, S. B., Hass, C. A., and Maxson, L. R. (1992). Caribbean biogeography: Molecular evidence for dispersal in West Indian terrestrial vertebrates.Proc. Natl. Acad. Sci. USA 891909.

    Google Scholar 

  • Heizmann, C. W., Müller, G., Jenny, E., Wilson, K. J., Landon, F., and Olomucki, A. (1981). Muscle β-actinin and serum albumin of the chicken are indistinguishable by physicochemical and immunological criteria.Proc. Natl. Acad. Sci. USA 7874.

    Google Scholar 

  • Jimenez, M., and Planas, J. (1973). Plasma proteins of the goosefishLophius piscatorius (L.).J. Fish Biol. 5125.

    Google Scholar 

  • Khalil, F., and Abdel-Messeih, G. (1963). Tissue constituents of reptiles in relation to their mode of life. III. Nitrogen content and serum proteins.Comp. Biochem. Physiol. 975.

    Google Scholar 

  • Kragh-Hansen, U., Brennan, S. O., Minchiotti, L., and Galliano, M. (1994). Modified high-affinity binding of Ni2+, Ca2+ and Zn2+ to natural mutants of human serum albumin and proalbumin.Biochem. J. 301217.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227680.

    Google Scholar 

  • Licht, P., and Pavgi, S. (1992). Identification and purification of a high-affinity thyroxine binding protein that is distinct from albumin and prealbumin in the blood of a turtle,Trachemys scripta.Gen. Comp. Endocrinol. 85179.

    Google Scholar 

  • Lykakis, J. J. (1971). Serological and immunological comparison of turtle blood proteins: Serum proteins and hemoglobins.Comp. Biochem. Physiol. 39B83.

    Google Scholar 

  • Madison, J., Arai, K., Sakamoto, Y., Feld, R. D., Kyle, R. A., Watkins, S., Davis, E., Matsuda, Y.-I., Amaki, I., and Putnam, F. W. (1991). Genetic variants of serum albumin in Americans and Japanese.Proc. Natl. Acad. Sci. USA 889853.

    Google Scholar 

  • Maillou, J., and Nimmo, I. A. (1993). Albumin-like proteins in the serum of rainbow trout (Salmo gairdneri).Comp. Biochem. Physiol. 104B387.

    Google Scholar 

  • Masat, R. J., and Dessauer, H. C. (1968). Plasma albumins of reptiles.Comp. Biochem. Physiol. 25119.

    Google Scholar 

  • Matsudaira, P. (1987). Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes.J. Biol. Chem. 26210035.

    Google Scholar 

  • Mayer, R. J., and Walker, J. H. (1987).Immunochemical Methods in Cell and Molecular Biology Academic Press, London.

    Google Scholar 

  • McIndoe, W. M. (1962). Occurrence of two plasma albumins in the domestic fowl.Nature 195353.

    Google Scholar 

  • Minchiotti, L., Galliano, M., Iadarola, P., Meloni, M. L., Ferri, G., Porta, F., and Castellani, A. A. (1989). The molecular defect in a COOH-terminal-modified and shortened mutant of human serum albumin.J. Biol. Chem. 2643385.

    Google Scholar 

  • Nardelli Haefliger, D. N., Moskaitis, Schoenberg, D. R., and Wahli, W. (1989). Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene family.J. Mol. Evol. 29344.

    Google Scholar 

  • Peters, T., Jr. (1977). Serum albumin: Recent progress in the understanding of its structure and biosynthesis.Clin. Chem. 235.

    Google Scholar 

  • Peters, T., Jr. (1985). Serum albumin. In Anfinsen, C. B., Edsall, J. T., and Richards, F. M. (eds.),Advances in Protein Chemistry, Vol. 37 Academic Press, Orlando, FL, pp. 161–245.

    Google Scholar 

  • Saint-Girons, H. (1985). TheSphenodon: Ecological features and some hypotheses concerning its evolution.Bull. Chi. Herp. Soc. 2048.

    Google Scholar 

  • Saint-Girons, H., Bell, B. D., and Newman, D. G. (1980). Observations on the activity and thermoregulation of the tuatara,Sphenodon punctatus (Reptilia: Rhynchocephalia) on Stephens Island.N.Z. J. Zool. 7551.

    Google Scholar 

  • Scatchard, G., Batchelder, A. C., and Brown, A. (1944). Chemical, clinical and immunological studies on the products of human plasma fractionation. VI. The osmotic pressure of plasma and of serum albumin.J. Clin. Invest. 23458.

    Google Scholar 

  • Schorpp, M., Döbbeling, U., Wagner, U., and Ryffel, G. U. (1988). 5′-Flanking and 5′-proximal exon regions of the twoXenopus albumin genes.J. Mol. Biol. 19983.

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genusPeromyscus. I. Variation in the old-field mouse (Peromyscus polionotus).Studies in Genetics VI, University of Texas Publishers (7103), p. 49.

  • Shearer, W. T., Bradshaw, R. A., Gurd, R. N., and Peters, T., Jr. (1967). The amino acid sequence and copper (II)-binding properties of peptide (1–24) of bovine serum albumin.J. Biol. Chem. 2425451.

    Google Scholar 

  • Stormont, C., and Suzuki, Y. (1963). Genetic control of albumin phenotypes in horses.Proc. Soc. Exp. Biol. Med. 114673.

    Google Scholar 

  • Wallace, D. G., and Wilson, A. C. (1972). Comparison of frog albumins with those of other vertebrates.J. Mol. Evol. 272.

    Google Scholar 

  • Watkins, S., Sakamoto, Y., Madison, J., Davis, E., Smith, D. G., Dwulet, J., and Putnam, F. W. (1993). cDNA and Protein sequence of polymorphic macaque albumins that differ in bilirubin binding.Proc. Natl. Acad. Sci. USA 902409.

    Google Scholar 

  • Wilson, A. C., Carlson, S. S., and White, T. J. (1977). Biochemical evolution.Annu. Rev. Biochem. 46573.

    Google Scholar 

  • Wilson, K. J., and Lee, A. K. (1970). Changes in oxygen consumption and heart-rate with activity and body temperature in the tuatara,Sphenodon punctatum.Comp. Biochem. Physiol. 33311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M.A., Carne, A., Daugherty, C.H. et al. Identification of a 130-kDa albumin in tuatara (Sphenodon) and detection of a novel albumin polymorphism. Biochem Genet 33, 189–204 (1995). https://doi.org/10.1007/BF00554731

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554731

Key words

Navigation