Advertisement

Biochemical Genetics

, Volume 30, Issue 1–2, pp 13–26 | Cite as

Identification of two distinct amplifications of the esterase B locus inCulex pipiens (L.) mosquitoes from mediterranean countries

  • Marylène Poirié
  • Michel Raymond
  • Nicole Pasteur
Article

Abstract

Two new highly active esterases were detected by starch electrophoretic studies inCulex pipiens mosquitoes from the area of Montpellier (France) and from Cyprus. We demonstrate here that both the French and the Cyprus esterases B are overproduced due to amplification of the coding gene. The production of the esterase B is approximately 50- and 500-fold higher in mosquitoes from France and Cyprus, respectively, than in susceptible insects, whereas the number of gene copies is about 25 and 250. Differences of about 7- and 95-fold were also found in the degree of chlorpyrifos resistance. RFLP comparison of the amplified region containing the esterase B gene revealed large differences between French and Cyprus mosquitoes. It thus appears that two distinct haplotypes with an esterase B gene coding an enzyme with identical electrophoretic mobility have been amplified. We therefore named the haplotypes in mosquitoes from France and Cyprus B4 and B5, respectively. The estimated genetic distance between these two haplotypes is not smaller than those observed in all pair comparisons of other known esterase B haplotypes. These results are discussed in the context of amplification phenomena.

Key words

mosquito esterase B locus amplification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyssat-Arnaouty, V., Mouchès, C., Georghiou, G. P., and Pasteur, N. (1989). Detection of organophosphate detoxifying esterases by dot-blot immunoassays inCulex mosquitoes.J. Am. Mosq. Control Assoc. 5196.Google Scholar
  2. Bisset, J. A., Rodriguez, M. M., Hemingway, J., Diaz, C., Small, G. J., and Ortiz, E. (1991). Malathion and pyrethroid resistance inCulex quinquefasciatus from Cuba: Efficacy of pirimiphos-methyl in the presence of at least three resistance mechanisms.Med. Vet. Entomol. 5223.Google Scholar
  3. Callaghan, A. (1989).Genetic and Biochemical Studies of Elevated Esterase Electromorphs in Culex pipiens, Ph.D. thesis, University of London, London.Google Scholar
  4. Curtis, C. F., and Pasteur, N. (1981). Organophosphate resistance in vector populations of the complexCulex pipiens L. (Diptera, Culicidae).Bull. Entomol. Res. 71153.Google Scholar
  5. de Stordeur, E. (1976). Esterases in the mosquitoCulex pipiens pipiens: Formal genetics and polymorphism of adult esterases.Biochem. Genet. 14481.Google Scholar
  6. Finney, D. J. (1971).Probit Analysis, Cambridge University Press.Google Scholar
  7. Georghiou, G. P., and Pasteur, N. (1978). Electrophoretic pattern in insecticide resistant and susceptible mosquitoes.J. Econ. Entomol. 7201.Google Scholar
  8. Georghiou, G. P., Metcalf, R. L., and Gidden, F. E. (1966). Carbamate resistance in mosquitoes: Selection ofCulex pipiens fatigans Wied. (=Culex quinquefasciatus) for resistance to Baygon.Bull. WHO 35691.Google Scholar
  9. Georghiou, G. P., Pasteur, N., and Hawley, M. K. (1980). Linkage relationships between organophosphate resistance and a highly active esterase-B inCulex quinquefasciatus from California.J. Econ. Entomol. 73301.Google Scholar
  10. Hawkes, R., Niday, F., and Gordon, J. (1982). A dot-immunobinding assay for monoclonal and other antibodies.Anal. Biochem. 119142.Google Scholar
  11. Hemingway, J., Callaghan, A., and Amin, A. M. (1990). Mechanisms of organophosphate and carbamate resistance inCulex quinquefasciatus from Saudi Arabia.Med. Vet. Entomol. 4275.Google Scholar
  12. Jukes, T. H., and Cantor, C. R. (1969) Evolution of protein molecules. In Munro, H. N. (ed.),Mammalian Protein Metabolism Academic Press, New York, Vol. 3, pp. 21–132.Google Scholar
  13. Magnin, M. (1986).Résistance aux insecticides organophosphorés: détection, caractérisation, génétique et dynamique dans les populations naturelles. Etude du complexe Culex pipiensL. (Diptera: Culicidae) et essai d'application à Simulium damnosums.l. Theobald (Diptera: Simulidae), Thèse de doctorat, Université de Paris VI, Paris.Google Scholar
  14. Magnin, M., Pasteur, N., and Raymond, M. (1987). Multiple incompatibilities within populations ofCulex pipiens L. in southern France.Genetica 74125.Google Scholar
  15. Magnin, M., Marboutin, E., and Pasteur, N. (1988). Insecticide resistance inCulex quinquefasciatus (Diptera: Culicidae) in West Africa.J. Med. Entomol. 2599.Google Scholar
  16. Mouchès, C., Pasteur, N., Bergé, J. B., Hyrien, O., Raymond, M., Robert de Saint Vincent, B., de Silvestri, M., and Georghiou, G. P. (1986). Amplification of an esterase gene is responsible for insecticide resistance in a CaliforniaCulex mosquito.Science 233778.Google Scholar
  17. Mouchès, C., Magnin, M., Bergé, J. B., de Silvestri, M., Beyssat, V., Pasteur, N., and Georghiou, G. P. (1987). Overproduction of detoxifying esterases in organophosphate-resistant mosquitoes and their presence in other insects.Proc. Natl. Acad. Sci. USA 842113.Google Scholar
  18. Mouchès, C., Pauplin, Y., Agarwal, M., Lemieux, L., Herzog, M., Abadon, M., Beyssat-Arnaouty, V., Hyrien, O., Robert de Saint Vincent, B., Georghiou, G. P., and Pasteur, N. (1990). Characterization of amplification core of esterase B1 gene responsible for insecticide resistance inCulex.Proc. Natl. Acad. Sci. USA 872574.Google Scholar
  19. Nei, M. (1987).Molecular Evolutionnary Genetics Colombia University Press, New York.Google Scholar
  20. Nei, M., and Miller, J. C. (1990). A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data.Genetics 125873.Google Scholar
  21. Pasteur, N. (1977).Recherches de génétique chez Culex pipiens pipiensL. Polymorphisme enzymatique, autogénèse et résistance aux insecticides organophosphorés, Thèse de doctorat d'Etat, Université de Montpellier II, Montpellier.Google Scholar
  22. Pasteur, N., and Georghiou, G. P. (1989). Improved filter paper test for detecting and quantifying increased esterase activity in organophosphate-resistant mosquitoes (Diptera: Culicidae).J. Econ. Entomol. 82(2):347.Google Scholar
  23. Pasteur, N., Sinègre, G., and Gabinaud, A. (1981).Est-2 andEst-3 polymorphisms inCulex pipiens L. from Southern France in relation to organophosphate resistance.Biochem. Genet. 19499.Google Scholar
  24. Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J., and Britton-Davidian, J. (1988).Practical Isozyme Genetics Ellis Horwood, Chichester.Google Scholar
  25. Prabhaker, N., Georghiou, G. P., and Pasteur, N. (1987). Genetic association between highly active esterases and organophosphate resistance inCulex tarsalis.J. Am. Mosq. Control Assoc. 3473.Google Scholar
  26. Prabhaker, N., Coudriet, D. L., and Toscano, N. C. (1988). Effects of synergists on organophosphate and permethrin resistance in Sweetpotato Whitefly (Homoptera: Aleyrodidae).J. Econ. Entomol. 81(1):34.Google Scholar
  27. Raymond, M. (1985). Présentation d'un programme “Basic” d'analyse log-probit pour microordinateur.Cah. ORSTOM sér. Entomol. Méd. Parasitol. 23117.Google Scholar
  28. Raymond, M., Fournier, D., Bride, J. M., Cuany, A., Bergé, J. B., Magnin, M., and Pasteur, N. (1986). Identification of resistance mechanisms inCulex pipiens (Diptera: Culicidae) from southern France: Insensitive acetylcholinesterase and detoxifying oxidases.J. Econ. Entomol. 791452.Google Scholar
  29. Raymond, M., Pasteur, N., Georghiou, G. P., Mellon, R. B., Wirth, M. C., and Hawley, M. (1987). Detoxification esterases new to California in organophosphate resistantCulex quinquefasciatus (Diptera: Culicidae).J. Med. Entomol. 2424.Google Scholar
  30. Raymond, M., Beyssat-Arnaouty, V., Sivasubramanian, N., Mouchès, C., Georghiou, G. P., and Pasteur, N. (1989). Diversity of the amplification of various esterases B responsible for organophosphate resistance inCulex mosquitoes.Biochem. Genet. 27417.Google Scholar
  31. Raymond, M., Callaghan, A., Fort, P., and Pasteur, N. (1991). Worldwide migration of amplified insecticide resistance genes in mosquitoes.Nature 350151.Google Scholar
  32. Saitou, N., and Nei, M. (1987). The Neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4(4):406.Google Scholar
  33. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  34. Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Natl. Acad. Sci. USA 764350.Google Scholar
  35. Villani, F., White, J. B., Curtis, C. F., and Miles, S. J. (1983). Inheritance and activity of some esterases associated with organophosphate resistance in mosquitoes of the complex ofCulex pipiens L. (Diptera: Culicidae).Bull. Entomol. Res. 23154.Google Scholar
  36. Villani, F., Urbanelli, S., Gad, A., Nudelman, S., and Bullini, L. (1986). Electrophoretic variations ofCulex pipiens from Egypt and Israel.Biol. J. Linn. Soc. 2949.Google Scholar
  37. Wirth, M. C., Marquine, M., Georghiou, G. P., and Pasteur, N. (1990). Esterases A2 and B2 inCulex quinquefasciatus (Diptera: Culicidae): Role in organophosphate resistance and linkage studies.J. Med. Entomol. 7202.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Marylène Poirié
    • 1
  • Michel Raymond
    • 1
  • Nicole Pasteur
    • 1
  1. 1.Laboratoire de Génétique et Environnement, Case courrier 64, Institut des Sciences de l'Evolution (CNRS, URA 327)Université Montpellier IIMontpellier 05France

Personalised recommendations