Fibre Chemistry

, Volume 26, Issue 6, pp 377–382 | Cite as

Effect of thiourea dioxide on the dynamics of continuous homophase synthesis of fibre-forming copolymers of acrylonitrile, methyl acrylate, and 2-acrylamido-2-methylpropanesulfonic acid

  • L. A. Shcherbina
  • E. A. Alekhina
  • V. G. Chirtulov
  • V. É. Geller
Chemical Fibre Chemistry And Technology


The effect of thiourea dioxide on the dynamics of homophase synthesis of copolymers of acrylonitrile, methyl acrylate, and 2-acrylamido-2-methylpropanesulfonic acid in 51.5% aqueous solution of NaSCN was investigated and its role in decreasing the induction period of the process was demonstrated. The effect of the synergism of 2-acrylamido-2-methylpropanesulfonic acid and thiourea dioxide, which reduces the induction period of synthesis, was established.


Polymer Methyl Aqueous Solution Dioxide Acrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. Gol'dfein and B. A. Zyubin, Vysokomolek. Soedin.,A32, No. 11, 2243–2263 (1990).Google Scholar
  2. 2.
    S. V. Valueva, A. I. Kipper, et al., Vysokomolek. Soedin.,A34, No. 12, 35–44 (1992).Google Scholar
  3. 3.
    A. E. Nesterov, Handbook of the Physical Chemistry of Polymers. Vol. 1, Properties of Polymer Solutions and Blends [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  4. 4.
    B. E. Geller and I. A. Aripov, in: Proceedings of the All-Union Scientific Conference on Problems of Modification of Natural and Synthetic Fibre-forming Polymers [in Russian], Moscow (October 29–30, 1991), p. 56.Google Scholar
  5. 5.
    A. S. Chegol' and N. M. Kvash (eds.), Analytical Control of Production of Synthetic Fibres [in Russian], Khimiya, Moscow (1982).Google Scholar
  6. 6.
    V. P. D'yakonov, Handbook of Basic Algorithms and Programs for PC [in Russian], Nauka, Moscow (1987).Google Scholar
  7. 7.
    S. S. Ivanchev and N. I. Solomko, Vysokomolek. Soedin.,8, No. 4, 322–328 (1966).Google Scholar
  8. 8.
    G. P. Gladyshev, V. A. Popov, et al., Dokl. Akad. Nauk SSSR,215, No. 4, 899–901 (1974).Google Scholar
  9. 9.
    J. Dzendzy, Kobunsy Kagaku, Chem. High Polymer,26, No. 287, 228–234 (1969).Google Scholar
  10. 10.
    B. A. Zyubin, M. D. Gol'dfein, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.,27, No. 4, 457–461 (1984).Google Scholar
  11. 11.
    V. A. Kabanov, J. Polym. Sci. Part C, No. 50, 71–77 (1975).Google Scholar
  12. 12.
    S. Tazuke, K. Tsiji, et al., J. Phys. Chem.,71, No. 9, 2957–2963 (1967).Google Scholar
  13. 13.
    T. O. Osmanov, V. F. Gromov, et al., Vysokomolek. Soedin.,A22, No. 3, 668–673 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • L. A. Shcherbina
    • 1
  • E. A. Alekhina
    • 1
  • V. G. Chirtulov
    • 1
  • V. É. Geller
    • 1
  1. 1.Mogilev Institute of TechnologyBelorus

Personalised recommendations