Advertisement

Journal of Materials Science

, Volume 5, Issue 7, pp 546–556 | Cite as

Scanning electron microscope studies of striations in ZnS

  • D. B. Holt
  • M. Culpan
Papers

Abstract

ZnS platelets crossed by two orthogonal sets of striations were examined. Nomarski optical interference micrographs and scanning electron microscope (SEM) secondary electron micrographs showed that both sets of striations had associated surface topographical features. One set consisted of polytype or faulted bands, the other of thickness variations (“linear markings”). SEM cathodoluminescence micrographs showed that in some specimens certain lines in both sets were strong light sources. In other specimens only polytype interfaces were linear cathodoluminescent sources. SEM charge collection micrographs showed that many of the polytype or faulted bands could produce contrast possibly due to the separation of electron-hole pairs by internal electric fields associated with these defects. Transmission electron microscopy showed that there could be several different types of faulted stacking structures in areas a micron square in striated ZnS.

Keywords

Scanning Electron Microscope Transmission Electron Microscopy Electron Micrographs Microscope Study Electron Microscope Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Merz,Helv. Phys. Acta 31 (1958) 625.Google Scholar
  2. 2.
    M. A. Short, E. G. Steward, andR. B. Tomlinson,Nature 177 (1958) 240.Google Scholar
  3. 3.
    A. H. McKeag andE. G. Steward,J. Electrochem. Soc. 104 (1957) 41.Google Scholar
  4. 4.
    T. Peters, J. Singer, V. A. Brophy, andJ. L. Birman,J. Appl. Phys. 34 (1963) 2210.Google Scholar
  5. 5.
    I. T. Steinberger andS. Mardix, II–VI Semiconducting Compounds Conference, edited by D. G. Thomas (Benjamin, New York, 1967) pp. 167–178.Google Scholar
  6. 6.
    O. Brafman, E. Alexander, andI. T. Steinberger,Acta Cryst. 22 (1967) 347.Google Scholar
  7. 7.
    S. Mardix, E. Alexander, O. Brafman, andI. T. Steinberger,ibid 808.Google Scholar
  8. 8.
    S. Mardix, O. Brafman, andI. T. Steinberger,ibid, 805.Google Scholar
  9. 9.
    S. Mardix andO. Brafman,ibid 23 (1967) 501.Google Scholar
  10. 10.
    Idem, ibid B24 (1968) 258.Google Scholar
  11. 11.
    I. Kiflawi, S. Mardix, andI. T. Steinberger,ibid B25 (1969) 1581.Google Scholar
  12. 12.
    S. Mardix, I. Kiflawi, andZ. H. Kalman,ibid 1586.Google Scholar
  13. 13.
    H. Blank, P. Delavignette, R. Gevers, andS. Amelinckx,Phys. stat. sol. 7 (1964) 747.Google Scholar
  14. 14.
    F. Secco D'Aragona, P. Delavignette, andS. Amelinckx,J. de Physique 27 Colloque C3 (1966) C3–121.Google Scholar
  15. 15.
    Idem, Phys. stat. sol:14 (1966) K115.Google Scholar
  16. 16.
    G. Shachar, S. Mardix, andI. T. Steinberger,J. Appl. Phys. 39 (1968) 2485.Google Scholar
  17. 17.
    S. Mardix, Z. H. Kalman, andI. T. Steinberger,Acta Cryst. A24 (1968) 464.Google Scholar
  18. 18.
    O. Brafman, E. Alexander, B. S. Frankel, Z. H. Kalman, andI. T. Steinberger,J. Appl. Phys. 35 (1964) 1855.Google Scholar
  19. 19.
    G. Shachar andY. Brada,ibid 39 (1968) 1701.Google Scholar
  20. 20.
    J. L. Birman,Phys. Rev. 115 (1959) 1493.Google Scholar
  21. 21.
    J. Tauc,J. Phys. Chem. Solids 11 (1959) 345.Google Scholar
  22. 22.
    O. Neumark,Phys. Rev. 125 (1962) 838.Google Scholar
  23. 23.
    O. Brafman, G. Shachar, andI. T. Steinberger,J. Appl. Phys. 36 (1965) 668.Google Scholar
  24. 24.
    J. L. Gillson andF. J. Darnell,Phys. Rev. 125 (1962) 149.Google Scholar
  25. 25.
    A. G. Fischer,J. Electrochem. Soc. 109 (1962) 1043.Google Scholar
  26. 26.
    Idem, ibid 110 (1963) 733.Google Scholar
  27. 27.
    H. C. Casey,ibid 114 (1967) 153.Google Scholar
  28. 28.
    P. M. Williams andA. D. Yoffe,Phil. Mag. 18 (1968) 555.Google Scholar
  29. 29.
    Idem, Nature 221 (1969) 952.Google Scholar
  30. 30.
    Idem, Radiation Effects 1 (1969) 61.Google Scholar
  31. 31.
    D. B. Holt andB. D. Chase,J. Mater. Sci. 3 (1968) 178.Google Scholar
  32. 32.
    P. R. Thornton, “Scanning Electron Microscopy” (Chapman and Hall, London, 1968) pp. 217–224.Google Scholar
  33. 33.
    H. Blank, P. Delavignette, andS. Amelinckx,Phys. stat. sol. 2 (1962) 1660.Google Scholar
  34. 34.
    L. T. Chadderton, A. G. Fitzgerald, andA. D. Yoffe,J. Appl. Phys. 35 (1964) 1582.Google Scholar
  35. 35.
    A. G. Fitzgerald andM. Mannami,Proc. Roy. Soc. A293 (1966) 469.Google Scholar
  36. 36.
    A. G. Fitzgerald, M. Mannami, E. H. Pogson, andA. D. Yoffe,J. Appl. Phys. 38 (1967) 3303.Google Scholar
  37. 37.
    A. Fourdeux, R. Gevers, andS. Amelinckx,Phys. stat. sol. 24 (1967) 195.Google Scholar
  38. 38.
    B. K. Daniels,Phil. Mag. 14 (1966) 487.Google Scholar
  39. 39.
    Idem, ibid 18 (1968) 753.Google Scholar
  40. 40.
    B. K. Daniels andD. B. Meadowcroft,Phys. stat. sol. 27 (1968) 535.Google Scholar
  41. 41.
    G. F. Alfrey andD. B. Meadowcroft,ibid 541.Google Scholar
  42. 42.
    D. B. Holt, R. Porter, andB. A. Unvala,J. Sci. Instr. 43 (1966) 371.Google Scholar
  43. 43.
    P. D. Fochs,J. Appl. Phys. 31 (1960) 1733.Google Scholar
  44. 44.
    P. D. Fochs andB. Lunn,ibid 34 (1963) 1762.Google Scholar
  45. 45.
    O. Brafman andI. T. Steinberger,Phys. Rev. 143 (1966) 501.Google Scholar
  46. 46.
    A. B. Winterbottom andD. McLean in “The Physical Examination of Metals”, edited by B. Chalmers and A. G. Quarell (Arnold, London, 1960) p. 1.Google Scholar
  47. 47.
    M. Aven andJ. S. Prener, “Physics and Chemistry of II–VI Compounds” (North-Holland, Amsterdam, 1967) p. 603.Google Scholar
  48. 48.
    H. Kallman, B. Kramer, E. Haidemenakis, W. J. Mcaleer, H. Barkemeyer, andP. I. Pollak,J. Electrochem. Soc. 108 (1961) 247.Google Scholar
  49. 49.
    S. Martinuzzi,Compt. Rend. 258 (1964) 1769.Google Scholar
  50. 50.
    E. Lendvay andP. Kovacs, Proc. Int. Conf. On Luminescence, 1966 (Publ. House of the Hungarian Acad. Sci., Budapest) pp. 1098–1101.Google Scholar
  51. 51.
    D. W. G. Ballentyne,J. Electrochem. Soc. 107 (1960) 807.Google Scholar
  52. 52.
    P. Goldberg,J. Appl. Phys. 32 (1961) 1520.Google Scholar
  53. 53.
    G. Gergely, P. Kovacs, E. Lendvay, andP. Sviszt, Proc. Internat. Conf. on Luminescence, 1966 (Publ. House of the Hungarian Acad. Sci., Budapest) pp. 1215–1218.Google Scholar
  54. 54.
    H. Mitsuhashi, H. Komura, andJ. Chikawa, II–VI Semiconducting Compounds Conference, edited by D. G. Thomas (Benjamin, New York, 1967) pp. 179–189.Google Scholar
  55. 55.
    B. A. Unvala, J. M. Woodcock, andD. B. Holt,Brit. J. Appl. Phys. 1 (1968) 11.Google Scholar
  56. 56.
    J. M. Woodcock andD. B. Holt,ibid 2 (1969) 775.Google Scholar
  57. 57.
    D. B. Holt andJ. M. Woodcock,J. Mater. Sci. 5 (1970) 275.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1970

Authors and Affiliations

  • D. B. Holt
    • 1
  • M. Culpan
    • 1
  1. 1.Metallurgy DepartmentImperial CollegeLondon, SW7UK

Personalised recommendations