Biochemical Genetics

, Volume 25, Issue 7–8, pp 591–602 | Cite as

Genetic control of a novel series of trypsin inhibitors in wheat and its relatives

  • R. M. D. Koebner


The aneuploids of Chinese Spring wheat have been used to locate the genes(Ti-2) coding for a novel series of trypsin inhibitors to the long arms of the homoeologous group 5 chromosomes. Three allelic variants at the 5D locus were detected in a limited survey among wheat varieties, but no variation at the loci on either chromosome 5A or chromosome 5B was detected. Homoeoloci were found in a number of alien relatives, and in the majority of cases, these were present on the group 5 homoeologue. However, inAegilops umbellulata, theTi-U2 locus was located on a chromosome presumed to belong to homoeologous group 1. NoHordeum vulgare orH. chilense Ti-2 gene was expressed in a wheat background. This new marker will be especially useful as a screening mechanism for nullisomy of chromosome 5B in work aimed at introgression of alien chromatin into wheat.

Key words

trypsin inhibitor homoeoloci wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth, C. C., Miller, T. E., and Gale, M. D. (1986). The genetic control of grain esterases in hexaploid wheat. 2. Homoeologous loci in related species.Theor. Appl. Genet. 72219.Google Scholar
  2. Boisen, S., and Djurtoft, R. (1981). Trypsin inhibitor from wheat endosperm: Purification and characterization.Cereal Chem. 58460.Google Scholar
  3. Boisen, S., and Djurtoft, R. (1982). Protease inhibitor from barley embryo inhibiting trypsin and trypsin-like microbial proteins. Purification and characterisation of two isoforms.J. Sci. Food Agr. 33341.Google Scholar
  4. Chapman, V., and Riley, R. (1970). Homoeologous meiotic chromosome pairing inTriticum aestivum in which chromosome 5B is replaced by an alien chromosome.Nature 226376.Google Scholar
  5. Chojecki, A. J. S., and Gale, M. D. (1982). Genetic control of glucose phosphate isomerase in wheat and related species.Heredity 49337.Google Scholar
  6. Dover, G. A. (1972).The Genetics and Function of the Meiotic Pairing-Control Systems in the Triticinae Ph.D. thesis, University of Cambridge, Cambridge.Google Scholar
  7. Galili, G., and Feldman, M. (1984). Intergenomic suppression of endosperm protein genes in common wheat.Can. J. Genet. Cytol. 26651.Google Scholar
  8. Hart, G. E., Islam, A. K. M. R., and Shepherd, K. W. (1980). Use of isozymes as chromosome markers in the isolation of wheat-barley addition lines.Genet. Res. (Camb.) 36311.Google Scholar
  9. Hejgaard, J., Bjørn, S. E., and Nielsen, G. (1984a). Localization to chromosomes of structural genes for the major protease inhibitors of barley grains.Theor. Appl. Genet. 68127.Google Scholar
  10. Hejgaard, J., Bjørn, S. E., and Nielsen, G. (1984b). Rye chromosomes carrying structural genes for the major grain protease inhibitors.Hereditas 101257.Google Scholar
  11. Hochstrasser, K., and Werle, E. (1969). Reindarstellung der Trypsininhibitoren aus Keimen von Weizen- und Roggensamen, Lokalisierung der aktiven Zentren.Z. Physiol. Chem. 350249.Google Scholar
  12. Islam, A. K. M. R., and Shepherd, K. W. (1982). Wheat-barley addition lines: their use in genetic and evolutionary studies of barley. InBarley Genetics IV, Proc. 4th Int. Barley Genet. Symp. Edinburgh University Press, Edinburgh, p. 729.Google Scholar
  13. Kaiser, K.-P., and Belitz, H.-D. (1971). Proteinaseninhibitoren in Lebensmitteln. IV. Vorkommen und Isolierung von Trypsin- und Chymotrypsin-inhibitoren in Kartoffeln.Chem. Microbiol. Technol. Lebensm. 11.Google Scholar
  14. Koebner, R. M. D. (1985).Controlled Introgression of Alien Chromatin into Wheat. Ph.D. thesis, University of Adelaide, Adelaide.Google Scholar
  15. Koebner, R. M. D. (1987). Genetic control of dipeptidase in the Triticeae.Theor. Appl. Genet. (in press).Google Scholar
  16. Koebner, R. M. D., and Shepherd, K. W. (1983). Shikimate dehydrogenase—a biochemical marker for group 5 chromosomes in the Triticinae.Genet. Res. (Camb.) 41209.Google Scholar
  17. Koebner, R. M. D., and Shepherd, K. W. (1987). Allosyndetic recombination between a chromosome ofAegilops umbellulata and wheat chromosomes.Heredity (in press).Google Scholar
  18. Law, C. N., Payne, P. I., Worland, A. J., Miller, T. E., Harris, P. A., Snape, J. W., and Reader, S. M. (1984). Studies of genetical variation affecting grain protein type and amount in wheat. InCereal Grain Protein Improvement IAEA, Vienna, p. 279.Google Scholar
  19. Lawrence, G. J., and Shepherd, K. W. (1981). Chromosomal control of genes controlling seed proteins in species related to wheat.Theor. Appl. Genet. 5925.Google Scholar
  20. McFadden, E. S., and Sears, E. R. (1946). The origin ofTriticum spelta and its free-threshing hexaploid relatives.J. Hered. 3781.Google Scholar
  21. McIntosh, R. A. (1983). A catalogue of gene symbols for wheat. In Sakamoto, S. (ed.),Proc. 6th Int. Wheat Genet. Symp., Kyoto, p. 1197.Google Scholar
  22. Mikola, J., and Kirsi, M. (1972). Differences between endospermal and embryonal trypsin inhibitors in barley, wheat, and rye.Acta Chem. Scand. 26787.Google Scholar
  23. Miller, T. E., and Reader, S. M. (1987). A guide to the homoeology of chromosomes within the Triticeae.Theor. Appl. Genet. 74214.Google Scholar
  24. Miller, T. E., Reader, S. M., and Chapman, V. (1982). The addition ofHordeum chilense chromosomes to wheat. InInduced Variability in Plant Breeding. Eucarpia International Symposium Pudoc, Wageningen, p. 79.Google Scholar
  25. Mistunaga, T. (1979). Isolation and characterization of trypsin inhibitors from wheat germ.J. Nutr. Sci. Vitaminol. 2543.Google Scholar
  26. Neuman, P. R., and Hart, G. E. (1983). Genetic control of shikimate dehydrogenase in hexaploid wheat.Biochem. Genet. 17585.Google Scholar
  27. Petrucci, T., Tomasi, M., Cantagalli, P., and Silano, V. (1974). Comparison of wheat albumin inhibitors of α-amylase and trypsin.Phytochemistry 132487.Google Scholar
  28. Quinones, M. A., Larter, E. N., and Samborski, D. J. (1972). The inheritance of resistance toPuccinia recondita in hexaploid triticale.Can. J. Genet. Cytol. 14495.Google Scholar
  29. Riley, R. (1966). Genotype-environmental interaction affecting chiasma frequency inTriticum aestivum.Chromosomes Today 157.Google Scholar
  30. Riley, R., Chapman, V., and Miller, T. E. (1973). The determination of meiotic chromosome pairing. In Sears, E. R., and Sears, L. M. S. (eds.),Proc. 4th Int. Wheat Genet. Symp. University of Missouri, Columbia, p. 731.Google Scholar
  31. Sears, E. R. (1966). Nullisomic-tetrasomic combinations in hexaploid wheat. In Riley, R., and Lewis, K. R. (eds.),Chromosome Manipulations and Plant Genetics Oliver & Boyd, Edinburgh, p. 29.Google Scholar
  32. Sears, E. R. (1976). A synthetic hexaploid wheat with fragile rachis.Wheat Inf. Serv. 41–4231.Google Scholar
  33. Sears, E. R., and Sears, L. M. S. (1978). The telocentric chromosomes of common wheat. In Ramanujam, S. (ed.),Proc. 5th Int. Wheat Genet. Symp. Ind. Soc. Genet. & Plant Breed., Delhi, p. 389.Google Scholar
  34. Shepherd, K. W. (1973). Homoeology of wheat and alien chromosomes controlling endosperm protein phenotypes. In Shepherd, K. W., and Finlay, K. W. (eds.),Proc. 3rd Int. Wheat Genet. Symp., Aust. Acad. Sci., p. 86.Google Scholar
  35. Stinissen, H. M., Peumans, W. J., Law, C. N., and Payne, P. I. (1983). Control of lectins inTriticum aestivum andAegilops umbellulata by homoeologous group 1 chromosomes.Theor. Appl. Genet. 6753.Google Scholar
  36. Wolf, G., Rimpau, J., and Lelley, T. (1977). Localization of structural and regulatory genes for phosphodiesterase in wheat (Triticum aestivum).Genetics 86597.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • R. M. D. Koebner
    • 1
  1. 1.AFRC Institute of Plant Science ResearchPlant Breeding InstituteTrumpington, CambridgeU.K.

Personalised recommendations