Skip to main content
Log in

Chemical applications of topology and group theory

15. Representations of polyhedral isomerizations using gale diagrams

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Polyhedral isomerizations of the typeP 1P 2P 3 are degenerate ifP 1 is combinatorically equivalent toP 3 and planar ifP 2 is a planar polygon. This paper systematizes degenerate non-planar isomerizations of 5- and 6-vertex polyhedra by using their Gale diagrams which are 1- and 2-dimensional, respectively. Using this method, it is trivial to show that all degenerate non-planar isomerizations of 5-vertex polyhedra can be formulated as sequences of Berry pseudorotation processes, i.e. the prototypical diamond-squarediamond (dsd) process. The Gale diagrams of the 7 combinatorically distinct 6-vertex polyhedra consist necessarily of points on the circumference of the unit circle as well as the center in the case of the pentagonal pyramid. Study of allowed motions of these points along the circumference of the unit circle in these Gale diagrams reveal 6 different types of single or multiple parallel dsd processes or closely related dsd′ or sds processes connecting these 7 combinatorically distinct 6-vertex polyhedra. In addition, a study of allowed motions of the points on the circumference of the Gale diagrams of the 6-vertex polyhedra through the center reveal 2 additional degenerate nonplanar isomerization processes of 6-vertex polyhedra which involve pentagonal pyramid intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King, R. B.: Theor. Chim. Acta (Berl.)63, 323 (1983)

    Google Scholar 

  2. Muetterties, E. L.: J. Am. Chem. Soc.91, 1636 (1969)

    Google Scholar 

  3. Brocas, J.: Top. Curr. Chem.32, 43 (1972)

    Google Scholar 

  4. Muetterties, E. L.: J. Am. Chem. Soc.90, 5097 (1968)

    Google Scholar 

  5. King, R. B.: Theor. Chim. Acta (Berl.)59, 25 (1981)

    Google Scholar 

  6. Klemperer, W. G.: J. Am. Chem. Soc.94, 6940 (1972)

    Google Scholar 

  7. Lipscomb, W. N.: Science153, 373 (1966)

    Google Scholar 

  8. King, R. B.: Inorg. Chim. Acta49, 237 (1981)

    Google Scholar 

  9. Federico, P. J.: Geom. Ded.3, 469 (1975)

    Google Scholar 

  10. Grünbaum, B.: Convex polytopes. New York: Interscience 1967

    Google Scholar 

  11. King, R. B.: J. Am. Chem. Soc.91, 7211 (1969)

    Google Scholar 

  12. King, R. B.: Inorg. Chem.20, 363 (1981)

    Google Scholar 

  13. King, R. B.: Theor. Chim. Acta (Berl.)63, 103 (1983)

    Google Scholar 

  14. Berry, R. S.: J. Chem. Phys.32, 933 (1960)

    Google Scholar 

  15. Holmes, R. R.: Accts. Chem. Res.5, 296 (1972)

    Google Scholar 

  16. McMullen, P., Shephard, G. C.: Mathematika15, 123 (1968)

    Google Scholar 

  17. McMullen, P., Shephard, G. C.: Convex polytopes and the upper bound conjecture. Cambridge: Cambridge University Press 1971

    Google Scholar 

  18. Bailar, J. C., Jr.: J. Inorg. Nucl. Chem.8, 165 (1958)

    Google Scholar 

  19. Ray, P., Dutt, N. K.: J. Inorg. Nucl. Chem. Soc.20, 81 (1943)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For part 14 of this series see reference [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, R.B. Chemical applications of topology and group theory. Theoret. Chim. Acta 64, 439–451 (1984). https://doi.org/10.1007/BF00554229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554229

Key words

Navigation