Skip to main content
Log in

The isolation and characterization of a mutant allele at a new X-linked locus,mex, affecting NADP+-dependent enzymes inDrosophila melanogaster

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The isolation and characterization of mutant alleles in a regulatory gene affecting NADP+-dependent enzymes are described. The locus,mex, is at position 26.5 ± 0.74 on the X chromosome ofDrosophila melanogaster. The newly isolated mutant allele,mex 1, is recessive to either themex allele found in Oregon-R wild-type individuals or that found in thecm v parental stock in which the new mutants were induced. Themex 1 mutant allele is associated with statistically significant decreases in malic enzyme (ME) specific activity and ME specific immunologically cross-reacting material (ME-CRM) in newly emerged adult males. During this same developmental stage in males, the NADP+-dependent isocitrate dehydrogenase specific activity increases to statistically significant levels. Females of themex 1 mutant strain show statistically significant elevated levels of the pentose phosphate shunt enzymes, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Isoelectric focusing and thermolability comparisons of the active ME from mutant and control organisms indicate that the enzyme is the same. Developmental profiles ofmex 1 and control strains indicate that this mutant allele differentially modulates the levels of ME enzymatic activity and ME-CRM during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner, M. (1989).Drosophila A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., p. 349.

    Google Scholar 

  • Bentley, M. M., and Williamson, J. H. (1979). The control of aldehyde oxidase and xanthine dehydrogenase activities by thecinnamon gene inDrosophila melanogaster.Can. J. Genet. Cytol. 21457.

    Google Scholar 

  • Bentley, M. M., and Williamson, J. H. (1982). The developmental analysis of AO activity incin allelic heterozygotes ofD. melanogaster.Can. J. Genet. Cytol. 241.

    Google Scholar 

  • Bentley, M. M., and Williamson, J. H. (1985). Cytogenetic localization of a putative regulatory gene affecting an NADP+-dependent enzyme inDrosophila melanogaster.Can. J. Genet. Cytol. 27322.

    Google Scholar 

  • Bentley, M. M., Meidinger, R. G., and Williamson, J. H. (1983). Characterization of a low activity allele of NADP+-dependent isocitrate dehydrogenase fromDrosophila melanogaster.Biochem. Genet. 21725.

    Google Scholar 

  • Bewley, G. C., and Lucchesi, J. C. (1975). Lethal effects of low and null activity alleles of 6PGD inDrosophila melanogaster.Genetics 79451.

    Google Scholar 

  • Bodenstein, M. (1965). In Demerec, M. (ed.),The Biology of Drosophila Hafner, New York, p. 368f.

    Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248.

    Google Scholar 

  • Dalziel, K., and Londesborough, J. C. (1968). The mechanisms of reductive carboxylation reactions. Carbon dioxide or bicarbonate as a substrate of nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase and malic enzyme.Biochem. J. 110223.

    Google Scholar 

  • Eanes, W. F. (1983). Genetic localization and sequential electrophoresis of G6PD inDrosophila melanogaster.Biochem. Genet. 21703.

    Google Scholar 

  • Eggleston, L. V., and Krebs, H. A. (1974). Regulation of the pentose phosphate cycle.Biochem. J. 138425.

    Google Scholar 

  • Fox, D. J. (1971). The soluble citric acid cycle enzymes ofDrosophila melanogaster. I. Genetics and ontogeny of NADP-linked isocitrate dehydrogenase.Biochem. Genet. 569.

    Google Scholar 

  • Franklin, I. R., and Rumball, W. (1971). Report.Dros. Inform. Serv. 4737.

    Google Scholar 

  • Garcia, G., Nogueira, M., and Freire, M. (1989). Purification and characterization of a cofactor that controls the oxidative phase of the pentose phosphate cycle in liver and other tissues of rat.Biochim. Biophys. Acta 99059.

    Google Scholar 

  • Geer, B. W., and Laurie-Ahlberg, C. C. (1984). Genetic variation in the dietary sucrose modulation of enzyme activities inD. melanogaster.Genet. Res. Cambr. 43307.

    Google Scholar 

  • Geer, B. W., Kamiak, S. N., Kidd, K. R., Nishimura, R. A., and Yemm, S. J. (1976). Regulation of the oxidative NADP-enzyme tissue levels inD. melanogaster. I. Modulation by dietary carbohydrate and lipid.J. Exp. Zool. 19515.

    Google Scholar 

  • Geer, B. W., Woodard, C. G., and Marshall, S. D. (1978). Regulation of the oxidative NADP-enzyme tissue levels inD. melanogaster. II. The biochemical basis of dietary carbohydrate and D-glyceride modulation.J. Exp. Zool. 203391.

    Google Scholar 

  • Geer, B. W., Krochko, D., and Williamson, J. H. (1979a). Ontogeny, cell distribution and the physiological role of NADP-malic enzyme inDrosophila.Biochem. Genet. 17867.

    Google Scholar 

  • Geer, B. W., Lindel, D. L., and Lindel, D. M. (1979b). Relationship of the oxidative pentose shunt pathway to lipid synthesis inDrosophila melanogaster.Biochem. Genet. 17881.

    Google Scholar 

  • Geer, B. W., Krochko, D., Oliver, M. J., Walker, V. K., and Williamson, J. H. (1980). A comparative study of the NADP-malic enzymes fromDrosophila and chick liver.Comp. Biochem. Physiol. 65B25.

    Google Scholar 

  • Gerasimova, T. I., and Ananiev, E. V. (1972). Report.Dros. Inform. Serv. 4893.

    Google Scholar 

  • Glock, G. E., and McLean, P. (1953). Further studies on the properties and assay of glucose-6-phosphate dehydrogenase of rat liver.Biochem. J. 55400.

    Google Scholar 

  • Gvozdev, V. A., Gerasimove, T. I., Kogan, G. L., and Rosovosky, J. M. (1977). Investigations on the organization of genetic loci inDrosophila melanogaster: Lethal mutations affecting 6PGD and their suppression.Mol. Gen. Genet. 153191.

    Google Scholar 

  • Horie, Y. (1967). Dehydrogenase in carbohydrate metabolism in larvae of the silkworm,Bombyx mori.J. Insect Physiol. 131163.

    Google Scholar 

  • Iwabuchi, M., Hori, S. M., and Yorimoto, N. (1986). X-linked mutations that give rise to overproduction of G6PD inD. melanogaster.Biochem. Genet. 24319.

    Google Scholar 

  • Kirkman, H. N., Gaetani, G. F., and Clemons, E. H. (1986). NADP-binding proteins causing reduced availability and sigmoid release of NADP+ in human erythrocytes.J. Biol. Chem. 2614039.

    Google Scholar 

  • Laurell, C. B. (1966). Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies.Anal. Biochem. 1545.

    Google Scholar 

  • Lewis, E. B. (1960). A new standard food medium.Dros. Inform. Serv. 34117.

    Google Scholar 

  • Lewis, E. B., and Bacher, F. (1968). Method of feeding EMS to Drosophila.Dros. Inform. Serv. 43193.

    Google Scholar 

  • Lindsley, D. L., and Grell, E. H. (1968).Genetic Variations of Drosophila melanogaster. Carnegie Inst. Publ. 627.

  • Lindsley, D. L., and Zimm, G. (1985). The genome ofDrosophila melanogaster. 1. Genes A-K.Dros. Inform. Serv. 62.

  • Lindsley, D. L., and Zimm, G. (1986). The genome ofDrosophila melanogaster. 2. Lethals; maps.Dros. Inform. Serv. 64.

  • Lindsley, D. L., and Zimm, G. (1987). The genome ofDrosophila melanogaster. 3. Rearrangements.Dros. Inform. Serv. 65.

  • Magnuson, M. A., and Nikodem, V. M. (1983). Molecular cloning of a cDNA sequence for rat malic enzyme.J. Biol. Chem. 25812712.

    Google Scholar 

  • Malamud, D., and Drysdale, J. W. (1978). Isolectric points of proteins: A table.Anal. Biochem. 86620.

    Google Scholar 

  • Morris, S. M., Jr., Winberry, L. K., Fisch, J. E., Back, D. W., and Goodridge, A. G. (1984). Developmental and nutritional regulation of the messenger RNA for fatty acid synthase, malic enzyme and albumin in the livers of embryonic and newly hatched chicks.Mol. Cell. Biochem. 6463.

    Google Scholar 

  • Noguiera, M., Garcia, G., Mejuto, C., and Freire, M. (1986). Regulation of the pentose phosphate cycle: Cofactor that controls the inhibition of glucose-6-phosphate dehydrogenase by NADPH in rat liver.Biochem. J. 239553.

    Google Scholar 

  • O'Brien, S. J., and McIntyre, R. J. (1978). Genetics and biochemistry of enzymes and specific proteins ofDrosophila. In Ashburner, M., and Wright, T. R. F. (eds.),The Genetics and Biology of Drosophila, Academic Press, New York, Vol. 2a, p395.

    Google Scholar 

  • Ochoa, S. (1955). Malic enzyme. In Colowick, S. P., and Kaplan, N. O. (eds.),Methods In Enzymology Academic Press, New York, Vol. 1, p. 739.

    Google Scholar 

  • Ohnishi, S. (1982). New data on the genetic mapping of isocitrate dehydrogenase inD. melanogaster.Dros. Inform. Serv. 58121.

    Google Scholar 

  • Ohnishi, S., and Voelker, R. A. (1979). Comparative studies of allozyme loci inDrosophila simulans andD. melanogaster. II. Gene arrangement on the third chromosome.Jap. J. Genet. 54203.

    Google Scholar 

  • Rodrigez-Segade, S., Carion, A., and Friere, M. (1978). Regulation of the oxidative phase of the pentose phosphate cycle in mussels.Biochem. J. 170577.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1969).Biometry: The Principles and Practices of Statistics in Biological Research W. H. Freeman, San Francisco, p. 391.

    Google Scholar 

  • Stewart, B. R., and Merriam, J. R. (1974). Segmental Aneuploidy and enzyme activity as a method for cytogenetic localization inDrosophila melanogaster.Genetics 76301.

    Google Scholar 

  • Veech, R. L., Eggleston, L. V., and Krebs, H. A. (1969). The redox state of free nicotinamide adenine dinucleotide phosphate in the cytoplasm of rat liver.Biochem. J. 115609.

    Google Scholar 

  • Voelker, R. A., Ohnishi, S., Langley, C. H., Gausz, J., and Gyurkovics, H. (1981). Genetic and cytogenetic studies of malic enzyme inDrosophila melanogaster.Biochem. Genet. 19525.

    Google Scholar 

  • Williamson, J. H., and Bentley, M. M. (1983a). Comparative properties of three forms of G6PD inD. melanogaster.Biochem. Genet. 211153.

    Google Scholar 

  • Williamson, J. H., and Bentley, M. M. (1983b). Dosage compensation inDrosophila: NADP-enzyme activities and cross reacting material.Genetics 103649.

    Google Scholar 

  • Williamson, J. H., Krochko, D., and Bentley, M. M. (1980). Properties ofDrosophila NADP+-Isocitrate dehydrogenase purified on procion brilliant blue-sepharose-4B.Comp. Biochem. Physiol. 65B339.

    Google Scholar 

  • Wilton, A. N., Laurie-Ahlberg, C. C., Emigh, T. H., and Curtsinger, J. W. (1982). Naturally occurring enzyme activity variation inD. melanogaster. II. Relationship among enzymes.Genetics 102207.

    Google Scholar 

  • Wise, E. M., and Ball, E. G. (1964). Malic enzyme and lipogenesis.Proc. Natl. Acad. Sci. USA 521255.

    Google Scholar 

  • Young, W. J. (1966). X-linked electrophoretic variation in 6-phosphogluconate dehydrogenase inD. melanogaster.J. Hered. 5758.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by an Operating Grant from the Natural Sciences and Engineering Research Council of Canada to M.M.B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gromnicki, A.R., Bentley, M.M. The isolation and characterization of a mutant allele at a new X-linked locus,mex, affecting NADP+-dependent enzymes inDrosophila melanogaster . Biochem Genet 29, 145–162 (1991). https://doi.org/10.1007/BF00554208

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554208

Key words

Navigation