Theoretica chimica acta

, Volume 64, Issue 1, pp 57–64 | Cite as

Ring functions, as polarization functions, forab initio calculations on small rings: Dioxirane

  • José L. G. de Paz
  • Manuel Yáñez
Original Investigations

Abstract

The exponents and relative positions have been optimized for bond functions to be used as polarization functions in the theoretical treatment of small cycles. The transferability of the conventional bond functions to this type of “compact” systems is analyzed for the particular case of dioxirane and it is shown that they can be replaced by a single function located inside the ring (ring function) which describes equally well the polarization effects on the equilibrium geometry, charge distribution and dipole moment. These conclusions are corroborated by the characteristics exhibited by the corresponding localized molecular orbitals.

Key Words

Polarization functions ring function dioxirane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McLean, A. D., Yoshimine, M.: Tables of linear molecule wave functions, Suppl. IBM J. Res.12, 206 (1968)Google Scholar
  2. 2.
    Roos, B., Siegbahn, P.: Theoret. Chim. Acta (Berl.)17, 199 (1970)Google Scholar
  3. 3.
    Hariharan, P. C., Pople, J. A.: Chem. Phys. Let.16, 217 (1972)Google Scholar
  4. 4.
    Hariharan, P. C., Pople, J. A.: Theoret. Chim. Acta (Berl.)28, 213 (1972)Google Scholar
  5. 5.
    Zirz, C., Ahlrichs, R.: Theoret. Chim. Acta (Berl.)60, 355 (1981)Google Scholar
  6. 6.
    Burton, P. G., Carlsen, N. R., Magnusson, E. A.: Mol. Phys.32, 1687 (1976); Burton, P. G.: Mol. Phys.34, 51 (1977); Int. J. Quantum Chem.: Quant. Chem. Symp.11, 207 (1977)Google Scholar
  7. 7.
    Nesbet, R. K.: J. Chem. Phys.36, 1518 (1968)Google Scholar
  8. 8.
    Hariharan, P. C., Pople, J. A.: Mol. Phys.27, 209 (1974)Google Scholar
  9. 9.
    Mó, O., Yáñez, M.: Theoret. Chim. Acta (Berl.)47, 263 (1978)Google Scholar
  10. 10.
    Frost, A. A.: J. Chem. Phys.47, 3707 (1967); Theoret. Chim. Acta (Berl.)18, 156 (1970)Google Scholar
  11. 11.
    Fratev, F., Janoschek, R., Preuss, H.: Intern. J. Quant. Chem.4, 529 (1970)Google Scholar
  12. 12.
    Alrichs, R.: Theoret. Chim. Acta (Berl.)17, 348 (1970)Google Scholar
  13. 13.
    Rothenberg, R., Schaefer III, H. F.: Chem. Phys.54, 355 (1971)Google Scholar
  14. 14.
    Vladimiroff, T.: J. Phys. Chem.,77, 1983 (1973); Chem. Phys. Let.24, 340 (1974); J. Chem. Phys.64, 433 (1976)Google Scholar
  15. 15.
    Talaty, E. R., Simons, G.: Theoret. Chim. Acta (Berl.)48, 331 (1978)Google Scholar
  16. 16.a)
    Neisius, D., Verhaegen, G.: Chem. Phys. Let.66, 358 (1979);Google Scholar
  17. 16.b)
    Neisius, D., Verhaegen, G.: Chem. Phys. Let.78, 147 (1981);Google Scholar
  18. 16.c)
    Neisius, D., Verhaegen, G.: Chem. Phys. Let.89, 228 (1982)Google Scholar
  19. 17.
    Burton, P. G., Carlsen, N. R.: Chem. Phys. Let.46, 48 (1977)Google Scholar
  20. 18.
    Hehre, W. J., Dichfield, R., Pople, J. A.: J. Chem. Phys.56, 2257 (1972)Google Scholar
  21. 19.
    Catalán, J., Escudero, F., Laso, J., Mó, O., Yáñez, M.: J. Mol. Struct.69, 217 (1980)Google Scholar
  22. 20.
    Foster, J. M., Boys, S. F.: Rev. Mod. Phys.32, 300 (1960)Google Scholar
  23. 21.
    Cremer, D.: J. Am. Chem. Soc.101, 7199 (1979)Google Scholar
  24. 22.
    Cremer, D.: J. Chem. Phys.69, 4456 (1978)Google Scholar
  25. 23.
    Suenram, R. D., Lovas, F. J.: J. Am. Chem. Soc.100, 5117 (1978)Google Scholar
  26. 24.
    Bonaccorsi, R., Scrocco, E., Tomasi, J.: J. Chem. Phys.52, 5270 (1970); Theoret. Chim. Acta (Berl.)21, 17 (1971)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • José L. G. de Paz
    • 1
  • Manuel Yáñez
    • 1
  1. 1.Departmento de Química Física y Química Cuántica Centro Coordinado CSIC-UAMFacultad de CienciasCantoblancoSpain

Personalised recommendations