Skip to main content
Log in

Isolation ofCaenorhabditis elegans mutants lacking alcohol dehydrogenase activity

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Alcohol dehydrogenase (ADH) and the genes encoding this enzyme have been studied intensively in a broad range of organisms. Little, however, has been reported on ADH in the free-living nematodeCaenorhabiditis elegans. Extracts of wild-typeC. elegans contain ADH activity and display a single band of activity on a native polyacrylamide gel. Reaction rate for alcohol oxidation is more rapid with higher molecular weight alcohols as substrate than with ethanol. Primary alcohols are preferred to secondary alcohols.C. elegans is sensitive to allyl alcohol, a compound that has been used to select for ADH-null mutants of several organisms. Allyl alcohol-resistant mutant strains were selected from ethylmethanesulfonate (EMS)-mutagenized nematode populations. ADH activity was measured in extracts from eight of these strains and was found to be low or nondetectable. These results form a basis for molecular and genetic characterization of ADH expression inC. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennetzen, J. L., Swanson, J., Taylor, W. C., and Freeling, M. (1984). DNA insertion in the first intron of maizeAdhl affects message levels: Cloning of progenitor and mutantAdhl alleles.Proc. Natl. Acad. Sci. USA 814125.

    Google Scholar 

  • Bolla, R. (1980). Nematode energy metabolism. In Zuckerman, B. M. (ed.),Nematodes as Biological Models, Vol. 2 Academic Press, New York, pp. 165–192.

    Google Scholar 

  • Bolla, R. I., Weaver, C., Koslowski, P., Fitzsimmons, K., and Winter, R. E. K. (1987). Characterization of a nonparasitic isolate ofBursaphelenchus xylophilus.J. Nematol. 19304.

    Google Scholar 

  • Brenner, S. (1974). The genetics ofCaenorhabditis elegans.Genetics 110421.

    Google Scholar 

  • Chambers, G. K. (1988). TheDrosphila alcohol dehydrogenase gene-enzyme system. InAdvances in Genetics Vol. 25, pp. 39–107.

    Google Scholar 

  • Ciriacy, M. (1975). Genetics of alcohol dehydrogenase inSaccharomyces cerevisiae. I. Isolation and genetic analysis of adh mutants.Mutat. Res. 29315.

    Google Scholar 

  • Collins, J., Saari, B., and Anderson, P. (1987). Activation of a transposable element in the germ line but not in the soma ofCaenorhabditis elegans.Nature 328726.

    Google Scholar 

  • Cooper, A. F., Jr., and Van Gundy, S. D. (1971). Ethanol production and utilization byAphelenchus avenae andCaenorhabditis sp.J. Nematol. 3205.

    Google Scholar 

  • Fowler, P. W., Ball, A. J. S., and Griffiths, D. E. (1972). The control of alcohol dehydrogenase isozyme synthesis inSaccharomyces cerevisiae.Can. J. Biochem. 5035.

    Google Scholar 

  • Freeling, M., and Birchler, J. A. (1981). Mutants and variants of the alcohol dehydrogenase-1 gene in maize. In Stelow, J. K., and Hollaender, A. (eds.),Genetic Engineering, Principles and Methods Plenum, New York, Vol. 3, pp. 223–264.

    Google Scholar 

  • Goldberg, D. A., Posakony, J. W., and Maniatis, T. (1983). Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into theDrosophila germ line.Cell 3459.

    Google Scholar 

  • Herman, R. K. (1988). Genetics. In Wood, W. B. (ed.),The Nematode Caenorhabditis elegans Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 17–45.

    Google Scholar 

  • Jacobs, M., Dolferus, R., and Van Den Bossche, D. (1988). Isolation and biochemical analysis of ethyl methanesulfonate-induced alcohol dehydrogenase null mutants ofArabidopsis thaliana (L.) Heynh.Biochem. Genet. 26105.

    Google Scholar 

  • Jornvall, H., Persson, B., and Jeffery, J. (1987). Characteristics of alcohol/polyol dehydrogenases.Eur J. Biochem. 167195.

    Google Scholar 

  • Kriger, F., Burke, D., and Samoiloff, M. R. (1977). Induction of the alcohol-metabolizing pathway in the nematodePanagrellus redivivus: Phenotypic effects.Biochem. Genet. 151181.

    Google Scholar 

  • Lutstorf, U., and Megnet, R. (1968). Multiple forms of alcohol dehydrogenase inSaccharomyces caerevisiae. I. Physiological control of ADH-2 and properties of ADH-2 and ADH-4.Arch. Biochem. Biophys. 126933.

    Google Scholar 

  • Moerman, D. G., Benian, G. M., and Waterston, R. H. (1986). Molecular cloning of the muscle geneunc-22 inCaenorhabditis elegans by Tc1 transposon tagging.Proc. Natl. Acad. Sci. USA 832579.

    Google Scholar 

  • Moerman, D. G., and Waterston, R. H. (1989). Mobile elements inCaenorhabditis elegans and other nematodes. In Berg, D. E., and Howe, M. M. (eds.)Mobile DNA American Society for Microbiology, Washington, D.C., pp. 537–556.

    Google Scholar 

  • O'Donnell, J., Gerace, L., Leister, F., and Sofer, W. (1975). Chemical selection of mutants that affect alcohol dehydrogenase inDrosophila. II. Use of 1-pentyne-3-ol.Genetics 7973.

    Google Scholar 

  • O'Riodan, V. B., and Burnell, A. M. (1989). Intermediate metabolism in the dauer larva of the nematodeCaenorhabditis elegans. 1. Glycolysis, glyconeogenesis, oxidative phosphorylation and the tricarboxylic acid cycle.Comp. Biochem. Physiol. 92B233.

    Google Scholar 

  • Paquin, C. E., and Williamson, V. M. (1984). Temperature effect on the rate of Ty transposition.Science 22653.

    Google Scholar 

  • Paquin, C. E., and Williamson, V. M. (1986). Ty insertions at two loci account for most of the spontaneous antimycin-A resistance mutations during growth at 15°C ofSaccharomyces cerevisiae strains lackingADHI.Mol. Cell. Biol. 670.

    Google Scholar 

  • Sofer, W., and Hatkoff, M. A. (1972). Chemical selection of alcohol dehydrogenase-negative mutants inDrosophila.Genetics 72545.

    Google Scholar 

  • Sulston, J., and Hodgkin, J. (1988). Methods. In Wood, W. B. (ed.),The Nematode Caenorhabditis elegans, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 587–606.

    Google Scholar 

  • Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N. (1983). The embryonic cell lineage of the nematodeCaenorhabditis elegans.Dev. Biol. 10064.

    Google Scholar 

  • Wadsworth, W. G., and Riddle, D. L. (1989). Developmental regulation of energy metabolism inCaenorhabditis elegans.Dev. Biol. 132167.

    Google Scholar 

  • Williamson, V. M., and Paquin, C. E. (1987). Homology ofSaccharomyces cerevisiae ADH4 to an iron-requiring alcohol dehydrogenase fromZymomonas mobilis.Mol. Gen. Genet. 209374.

    Google Scholar 

  • Williamson, V. M., Bennetzen, J., Young, E. T., Nasmyth, K., and Hall, B. D. (1980). Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast.Nature 283214.

    Google Scholar 

  • Wills, C., and Phelps, J. (1975). A technique for the isolation of yeast alcohol dehydrogenase mutants with altered substrate specificity.Arch. Biochem. Biophys. 167627.

    Google Scholar 

  • Winberg, J. O., Thatcher, D. R., and McKinley-McKee, J. S. (1982). Alcohol dehydrogenase from the fruitflyDrosophila melanogaster: Substrate specificity of the alleloenzymesAdh S andAdh UF.Biochim. Biophys. Acta 7047.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, V.M., Long, M. & Theodoris, G. Isolation ofCaenorhabditis elegans mutants lacking alcohol dehydrogenase activity. Biochem Genet 29, 313–323 (1991). https://doi.org/10.1007/BF00554139

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554139

Key words

Navigation