Biochemical Genetics

, Volume 23, Issue 9–10, pp 705–728 | Cite as

Temperature-related kinetic differentiation of glucosephosphate isomerase alleloenzymes isolated from the blue mussel,Mytilus edulis

  • John G. Hall


Two glucosephosphate isomerase (GPI;D-glucose-6-phosphate ketolisomerase; EC alleloenzymes from the blue mussel,Mytilus edulis, were purified to homogeneity. The steady-state kinetic properties of GPI1.00 and GPI.96, which exhibit latitudinal clines in frequency along the Atlantic coast of North America, were determined in both the glycolytic and the gluconeogenic reaction directions at physiological temperatures and pH levels. The two alleloenzymes are catalytically similar at low temperatures (5–10°C), while GPI1.00 diverges to become more efficient at higher physiological temperatures (15–25°C). This pattern of differentiation is consistent with the latitudinal distributions of the alleloenzymes and is due to the greater temperature sensitivities of GPI1.00 V max /K m values of the two alleloenzymes are virtually the same over the physiological range of temperatures. The observed pattern of catalytic differentiation is similar to that seen for interspecific GPI variants.

Key words

glucosephosphate isomerase (EC Mytilus edulis alleloenzymes enzyme kinetics temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albery, W. J., and Knowles, J. R. (1976). Evolution of enzyme function and the development of catalytic efficiency.Biochemistry 155631.Google Scholar
  2. Anderson, S. M., and MacDonald, J. F. (1983). Biochemical and molecular analysis of naturally occurring Adh variants inDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 804798.Google Scholar
  3. Anonymous (1972). Mean surface water temperature and salinity readings for the east coast of North and South America. U.S. Coastal and Geodetic Survey, Publ. 31-1, U.S. Government Printing Office, Washington, D.C.Google Scholar
  4. Atkins, G. L., and Nimmo, I. A. (1981). A comment on the design of experiments to estimate the Michaelis-Menten parameters of enzyme-catalyzed reactions.Experientia 37122.Google Scholar
  5. Atkinson, D. E. (1977).Cellular Energy Metabolism and Its Regulation Academic Press, New York.Google Scholar
  6. Ayala, F. J. (ed.) (1976).Molecular Evolution Sinauer Associates, Sunderland, Mass.Google Scholar
  7. Bayne, B. L., Thompson, R. J., and Widdows, J. (1973). Some effects of temperature and food on the rate of oxygen consumption byMytilus edulis L. In Wieser, W. (ed.),Effects of Temperature on Ectothermic Organisms Springer-Verlag, Heidelberg, pp. 181–193.Google Scholar
  8. Beis, I., and Newsholme, E. A. (1975). The contents of adenine nucleotides, phosphagens, and some glycolytic intermediates in resting muscles from vertebrates and invertebrates.Biochem. J. 15223.Google Scholar
  9. Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of dye binding.Anal. Biochem. 72248.Google Scholar
  10. Cameselle, J. C., Sanchez, J. L., and Carrion, A. (1980). The regulation of glycolysis in the hepatopancreas of the sea musselMytilus edulis L.Comp. Biochem. Physiol. 65B95.Google Scholar
  11. Chemical Rubber Company (1974).Handbook of Biochemistry Chemical Rubber Company, Cleveland, Ohio.Google Scholar
  12. Corbin, K. W. (1977). Phosphoglucose isomerase polymorphism and natural selection in the sand crab,Emerita talpoida.Evolution 31331.Google Scholar
  13. Cornish-Bowden, A., and Endrenyi, L. (1981). Fitting of enzyme kinetic data without prior knowledge of weights.Biochem. J. 1931005.Google Scholar
  14. Currie, D. J. (1982). Estimating Michaelis-Menten parameters: Bias, variance, and experimental design.Biometrics 38907.Google Scholar
  15. Duggleby, R. G. (1979). Experimental designs for estimating the kinetic parameters for enzyme-catalyzed reactions.J. Theor. Biol. 81671.Google Scholar
  16. Dyson, J. E. D., and Noltmann, E. A. (1968). The effect of pH and temperature on the kinetic parameters of phosphoglucose isomerase: Participation of histidine and lysine in a proposed dual function mechanism.J. Biol. Chem. 2431401.Google Scholar
  17. Eanes, W. F. (1984). Viability interactions,in vivo activity and G6PD polymorphism inDrosophila melanogaster.Genetics 10695.Google Scholar
  18. Ebberink, R. H. M., and deZwaan, A. (1980). Control of glycolysis in the posterior adductor muscle of the sea musselMytilus edulis.J. Comp. Physiol. B 137165.Google Scholar
  19. Endrenyi, L., and Chan, F.-Y. (1981). Optimal design of experiments for the estimation of precise hyperbolic kinetic and binding parameters.J. Theor. Biol. 90241.Google Scholar
  20. Gabbott, P. A. (1976). Energy metabolism. In Bayne, B. L. (ed.),Marine Mussels: Their Ecology and Physiology Cambridge University Press, Cambridge, U.K., pp. 293–356.Google Scholar
  21. Gonzales, J., and Yevich. (1976). Responses of an estuarine population of the blue musselMytilus edulis to heated water from a steam generating plant.Mar. Biol. 34177.Google Scholar
  22. Hall, J. G. (1983). Ph.D. dissertation, State University of New York at Stony Brook, Stony Brook.Google Scholar
  23. Hall, J. G. (1985). The adaptation of enzymes to temperature: Catalytic characterization of glucosephosphate isomerase homologues isolated fromMytilus edulis andIsognomon alatus, bivalve molluscs inhabiting different thermal environments.Mol. Biol. Evol. 2251.Google Scholar
  24. Hall, J. G., and Koehn, R. K. (1983). The evolution of enzyme catalytic efficiency and adaptive inference from steady-state kinetic data.Evol. Biol. 1653.Google Scholar
  25. Hoffmann, R. J. (1981a). Evolutionary genetics ofMetridium senile. I. Kinetic differences in phosphoglucose isomerase allozymes.Biochem. Genet. 19129.Google Scholar
  26. Hoffmann, R. J. (1981b). Evolutionary genetics ofMetridium senile. II. Geographic patterns of allozyme variation.Biochem. Genet. 19 145.Google Scholar
  27. Hoffmann, R. J. (1983). Temperature modulation of the kinetics of phosphoglucose isomerase genetic variants from the sea anemoneMetridium senile.J. Exp. Zool. 227361.Google Scholar
  28. Hutchins, L. W. (1947). The bases for temperature zonation in geographical distribution.Ecol. Monogr. 17325.Google Scholar
  29. Incze, L. S., Lutz, R. A., and Watling, L. (1980). Relationships between effects of environmental temperature and seston on growth and mortality ofMytilus edulis in a temperature northern estuary.Mar. Biol. 57147.Google Scholar
  30. Koehn, R. K., and Williams, G. C. (1978). Genetic differentiation without isolation in the American eel,Anguilla rostrata. II. Temporal stability of geographic patterns.Evolution 32624.Google Scholar
  31. Koehn, R. K., Milkman, R., and Mitton, J. B. (1976). Population genetics of marine pelecypods. IV. Selection, migration and genetic differences in the blue mussel,Mytilus edulis.Evolution 302.Google Scholar
  32. Koehn, R. K., Zera, A. J., and Hall, J. G. (1983). Enzyme polymorphism and natural selection. In Nei, M., and Koehn, R. K. (eds.),Evolution of Genes and Proteins Sinauer Associates, Sunderland, Mass., pp. 115–236.Google Scholar
  33. Koehn, R. K., Hall, J. G., Innes, D. J., and Zera, A. J. (1984). Genetic differentiation ofMytilus edulis in eastern North America.Mar. Biol. 79117.Google Scholar
  34. Levinton, J. S., and Suchanek, T. H. (1978). Geographic variation, niche breadth and genetic differentiation at different scales in the musselsMytilus californianus andM. edulis.Mar. Biol. 49363.Google Scholar
  35. Lewontin, R. C. (1974).The Genetic Basis of Evolutionary Change Columbia University Press, New York.Google Scholar
  36. Londesborough, J. (1980). The causes of sharply bent or discontinuous Arrhenius plots for enzyme-catalyzed reactions.Eur. J. Biochem. 105211.Google Scholar
  37. Nei, M. (1975).Molecular Population Genetics and Evolution American Elsevier, New York.Google Scholar
  38. Nei, M., and Koehn, R. K. (eds.) (1983).Evolution of Genes and Proteins Sinauer Associates, Sunderland, Mass.Google Scholar
  39. Nevo, E. (1978). Genetic variation in natural populations: Patterns and theory.Theor. Pop. Biol. 13121.Google Scholar
  40. Newsholme, E. A., and Start, C. (1973).Regulation in Metabolism John Wiley and Sons, New York.Google Scholar
  41. Noltmann, E. A. (1972). Aldose-ketose isomerases. In Boyer, P. D. (ed.),The Enzymes, Vol. VI. Academic Press, New York, pp. 271–354.Google Scholar
  42. Northrup, D. B. (1983). Fitting enzyme-kinetic data to V/K.Anal. Biochem. 132457.Google Scholar
  43. Page, M. I. (1980). Transition states, standard states, and enzymic catalysis.Int. J. Biochem. 11331.Google Scholar
  44. Palumbi, S. R., Sidell, B. D., Van Beneden, R., Smith, G. D., and Powers, D. A. (1980). Glucosephosphate isomerase (GPI) of the teleostFundulus heteroclitus (Linnaeus): Isozymes, allozymes, and their physiological roles.J. Comp. Physiol. B 138 49.Google Scholar
  45. Place, A. R., and Powers, D. A. (1978). Genetic bases for protein polymorphism inFundulus heteroclitus (L.). I. Lactate dehydrogenase (Ldh-B), malate dehydrogenase (Mdh-A), glucosephosphate isomerase (Gpi-B), and phosphoglucomutase (Pgm-A).Biochem. Genet. 16577.Google Scholar
  46. Place, A. R., and Powers, D. A. (1979). Genetic variation and relative catalytic efficiences: Lactate dehydrogenase-B allozymes ofFundulus heteroclitus.Proc. Natl. Acad. Sci. USA 762354.Google Scholar
  47. Powers, D. A., and Place, A. R. (1978). Biochemical genetics ofFundulus heteroclitus (L.). I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-A, Gpi-B, and Pgm-A.Biochem. Genet. 16593.Google Scholar
  48. Reed, K. R. H., and Cumming, K. B. (1967). Thermal tolerance of the bivalve molluscsModiolus modiolus (L.),Mytilus edulis L., andBrachidontes demissus Dillwyn.Comp. Biochem. Physiol. 22149.Google Scholar
  49. Reeves, R. B. (1972). An imidazole alphastat hypothesis for vertebrate acid base regulation: Tissue carbon dioxide content and body temperature in bullfrogs.Resp. Physiol. 14219.Google Scholar
  50. Selander, R. K. (1976). Genic variation in natural populations. In Ayala, F. J. (ed.),Molecular Evolution Sinauer Associates, Sunderland, Mass., pp. 21–45.Google Scholar
  51. Selwyn, M. J. (1965). A simple test for inactivation of an enzyme during assay.Biochim. Biophys. Acta 105193.Google Scholar
  52. Somero, G. N. (1978). Temperature adaptation of enzymes: Biological optimization through structure-function compromises.Annu. Rev. Ecol. Syst. 91.Google Scholar
  53. Somero, G. N. (1981). pH-temperature interactions on proteins: Principles of optimal pH and buffer system design.Mar. Biol. Lett. 2163.Google Scholar
  54. Tilley, W. E., Gracy, R. W., and Welch, S. G. (1974). A point mutation increasing the stability of human phosphoglucose isomerase.J. Biol. Chem. 2494571.Google Scholar
  55. Waley, S. G. (1981). An easy method for the determination of initial rates.Biochem. J. 1931009.Google Scholar
  56. Weber, K., Pringle, J. R., and Osborn, M. (1972). Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. In Hirs, C. H., and Timasheff, S. N. (eds.),Methods in Enzymology, Vol. XXVI Academic Press, New York, pp. 3–27.Google Scholar
  57. Wells, H. W., and Gray, I. E. (1960). The seasonal occurrence ofMytilus edulis on the Carolina coast as a result of transport around Cape Hatteras.Biol. Bull. Mar. Biol. Lab. Woods Hole 119550.Google Scholar
  58. Widdows, J. (1976). Physiological adaptation ofMytilus edulis to cyclic temperatures.J. Comp. Physiol. 105115.Google Scholar
  59. Widdows, J. (1978). Combined effects of body size, food concentration and season on the physiology ofMytilus edulis.J. Mar. Biol. Assoc. U.K. 58109.Google Scholar
  60. Williams, G. C., Koehn, R. K., and Mitton, J. B. (1973). Differentiation without isolation in the American eel,Anguilla rostrata.Evolution 27192.Google Scholar
  61. Wilson, A. C., Carlson, S. S., and White, T. J. (1977). Biochemical evolution.Annul Rev. Biochem. 46573.Google Scholar
  62. Zera, A. J., Koehn, R. K., and Hall, J. G. (1985). Allozymes and biochemical adaptation. In Kerkut, G. A., and Gilbert, L. I. (eds.),Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 10 Pergamon Press, New York, pp. 633–674.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • John G. Hall
    • 1
  1. 1.Department of Ecology and EvolutionState University of New York at Stony BrookStony Brook

Personalised recommendations