Journal of Materials Science

, Volume 27, Issue 3, pp 761–766 | Cite as

Cooling and solidification of liquid-metal drops in a gaseous atmosphere

  • J. K. McCoy
  • A. J. Markworth
  • E. W. Collings
  • R. S. Brodkey


The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and solidification of the drop are described for both gaseous and vacuum atmospheres. A simple model, in which the drop is assumed to fall rectilinearly, with behaviour like that of a rigid particle, is developed to describe cooling behaviour. Recalescence of supercooled drops is assumed to occur instantaneously when a specified temperature is passed. The effects of solidification and experimental parameters on drop cooling are calculated and discussed. Major results include temperature as a function of time, and of drag, time to complete solidification, and drag as a function of the fraction of the drop solidified.


Polymer Atmosphere Heat Transfer Simple Model Experimental Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. L. Lacy, M. B. Robinson andT. J. Rathz,J. Cryst. Growth 51 (1981) 47.Google Scholar
  2. 2.
    R. J. Bayuzick, N. D. Evans, W. F. Hofmeister, K. R. Johnson andM. B. Robinson,Adv. Space Res. 4 (5) (1984) 85.Google Scholar
  3. 3.
    N. D. Evans, W. F. Hofmeister, R. J. Bayuzick andM. B. Robinson,Metall. Trans. 17A (1986) 973,Google Scholar
  4. 4.
    W. F. Hofmeister, N. D. Evans, R. J. Bayuzick andM. B. Robinson,ibid. 17A (1986) 1421.Google Scholar
  5. 5.
    M. B. Robinson, NASA Report NASA TM-78189 (1978).Google Scholar
  6. 6.
    J. K. McCoy, A. J. Markworth, R. S. Brodkey andE. W. Collings, in “Materials Processing in the Reduced Gravity Environment of Space”, edited by R. H. Doremus and P. C. Nordine (Materials Research Society, Pittsburgh, 1987) p. 163.Google Scholar
  7. 7.
    R. Clift, J. R. Grace andM. E. Weber, in “Bubbles, Drops, and Particles” (Academic, New York, 1978) p. 112.Google Scholar
  8. 8.
    G. Dahlquist andA. Björck, in “Numerical Methods” (Prentice-Hall, Englewood Cliffs, NJ, 1974) p. 346.Google Scholar
  9. 9.
    F, M. White, in “Viscous Fluid Flow” (McGraw-Hill, New York, 1974).Google Scholar
  10. 10.
    R. C. Weast (ed) in “CRC Handbook of Chemistry and Physics”, 61st Edn (CRC Press, Boca Raton, Florida, 1980) p. D-194.Google Scholar
  11. 11.
    Y. S. Touloukian, S. C. Saxena andP. HesterMans (eds), in “Thermophysical Properties of Matter” Vol. 11 (IFI/Plenum, New York, 1970) p. 18.Google Scholar
  12. 12.
    Y. S. Touloukian, P. E. Liley andS. C. Saxena (eds), in “Thermophysical Properties of Matter”, Vol. 3 (IFI/ Plenum, New York, 1970) p. 33.Google Scholar
  13. 13.
    S. A. Schaaf andP. L. Chambré, in Fundamentals of Gas Dynamics, Vol. 3, “High Speed Aerodynamics and Jet Propulsion”, edited by H. W. Emmons (Princeton University, Princeton, 1958) p. 687.Google Scholar
  14. 14.
    P. Predecki, A. W. Mullendore andN. J. Grant,Trans. Metall. Soc. AIME 223 (1965) 1581.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. K. McCoy
    • 1
  • A. J. Markworth
    • 1
  • E. W. Collings
    • 1
  • R. S. Brodkey
    • 2
  1. 1.Battelle, 505 King AvenueColumbusUSA
  2. 2.Ohio State UniversityColumbusUSA

Personalised recommendations