Journal of Materials Science

, Volume 27, Issue 3, pp 679–684 | Cite as

Synthesis of ultrafine single-component oxide particles by the spray-ICP technique

  • M. Suzuki
  • M. Kagawa
  • Y. Syono
  • T. Hirai


Ultrafine oxide particles were synthesized by introducing aqueous solutions of metal salts into a high-temperature r.f. inductively coupled plasma (the spray-ICP technique). The particles synthesized were spherical for ZrO2, Y2O3, Sm2O3, La2O3, δ-Al2O3, TiO2 (anatase), β-Bi2O3 and CuO, plate-like for Nd3O2, Cr2O3 and Pr2O3, polyhedral for PrO2, CeO2 and γ-Fe2O3, cubical for NiO, MgO, CaO, Co3O4 and Mn3O4, bar-like for SnO2 and ZnO, and foil-like for β-PbO and MoO3. The products of the alkaline earth group except for magnesium, were hydroxides and/or carbonates, spoiled by atmospheric H2O and/or CO2. The particle morphology suggests that particle growth is controlled predominantly by the gas-solid reaction occurring on the surface of nuclei condensed from the gas phase. Some of the oxides revealed a particle morphology characteristic of their crystal structures.


TiO2 SnO2 CeO2 Mn3O4 Y2O3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. B. Reed,J. Appl. Phys. 32 (1961) 821.Google Scholar
  2. 2.
    T. I. Barry, R. K. Bayliss andL. A. Lay,J. Mater. Sci. 3 (1968) 229.Google Scholar
  3. 3.
    T. Yoshida andK. Akashi,Trans. Jpn Inst. Metals 22 (1981) 371.Google Scholar
  4. 4.
    J. Canteloup andA. Mocellin,J. Mater. Sci. 11 (1976) 2352.Google Scholar
  5. 5.
    M. Kagawa, M. Kikuchi, R. Ohno andT. Nagae,J. Amer. Ceram. Soc. 64 (1981) C7.Google Scholar
  6. 6.
    M. Suzuki, M. Kagawa, T. B. Williams, Y. Syono andT. Hirai, in “Materials Science Forum”, edited by C. C. Sorrell and B. Ben-Nissan (Trans Tech Publications, Switzerland, 1988) p. 791.Google Scholar
  7. 7.
    M. Suzuki, M. Kagawa, Y. Syono andT. Hirai, in “Proceedings of the 9th International Symposium on Plasma Chemistry”, Pugnochiuso, Italy, 1989, edited by R. d'Agostino, p. 898.Google Scholar
  8. 8.
    Idem, J. Crystal Growth 99 (1990) 611.Google Scholar
  9. 9.
    G. V. Samsonov, in “The Oxide Handbook” (IFI/Plenum, New York, 1973).Google Scholar
  10. 10.
    I. Barin, in “Thermochemical Data of Pure Substances” (VCH, Weinheim, 1989).Google Scholar
  11. 11.
    D. R. Stull andH. Prophet, in “JANAF Thermochemical Tables”, 2nd Edn (National Bureau of Standards, Washington, DC, 1971).Google Scholar
  12. 12.
    M. W. Chase,et al., in “JANAF Thermochemical Tables”, 3rd Edn (National Bureau of Standards, Washington, DC, 1985).Google Scholar
  13. 13.
    O. Kubaschewski andC. B. Alock, in “Metallurgical Thermochemistry”, 5th Edn (Pergamon Press, Oxford, 1979).Google Scholar
  14. 14.
    R. E. Krjijanofski andA. Iu. Shtern, in “Thermophysical Properties of Metal Oxides” (Energiia Press, Leningrad, 1973).Google Scholar
  15. 15.
    M. S. J. Gani andR. McPherson,J. Mater. Sci. 15 (1980) 1915.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • M. Suzuki
    • 1
  • M. Kagawa
    • 1
  • Y. Syono
    • 1
  • T. Hirai
    • 1
  1. 1.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations