Journal of Materials Science

, Volume 27, Issue 3, pp 637–640 | Cite as

Effect of plasma on nitriding of Fe-18Cr-9Ni alloy

  • H. Kuwahara
  • H. Matsuoka
  • I. Tamura
  • J. Takada
  • S. Kikuchi
  • Y. Tomii


The plasma nitriding behaviour of Fe-18Cr-9Ni alloy was compared with gas nitriding. The alloy was nitrided under the following conditions: specimen temperature: 823 K, nitriding time: mainly 108 ks, total pressure: 0.4–0.7 kPa, mixture ratio of N2 and H2∶ 0.25, discharge voltage: 350–450 V, current: 0.8–1.1 A. Formation of a surface layer of iron nitrides was not observed. Formation of a homogeneous internal nitriding layer, consisting of small precipitates of CrN and the γ-phase matrix, was, however, noted. The lattice constant at the specimen surface was smaller than that at greater depth. This may have been because the sputtering effect decreased the dissolved nitrogen content at the specimen surface. The sputtering of iron nitrides at the specimen surface by the plasma was experimentally confirmed through γ′-Fe4N formation on Si beside an alloy specimen. The characteristics of the plasma nitriding mentioned above are discussed in relation to the sputtering.


Surface Layer Nitrides Nitrogen Content Lattice Constant Total Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kuwahara, H. Matsuoka, J. Takada andI. Tamura,J. Jpn. Plating Coating,10 (1990) 54.Google Scholar
  2. 2.
    Metals Handbook, Heat treating, edited by American Society for Metals 9th Edn, Vol. 4 (Metals Park, Ohio, 1981).Google Scholar
  3. 3.
    B. Billon andA. Hendry,Surf. Eng. 1 (1985) 114.Google Scholar
  4. 4.
    H. Kuwahara, J. Takada andI. Tamura in Proceedings of the 7th International Symposium on Plasma Chemistry, Eindhoven, July 1985, edited byC. J. Timmermans (International Union of Pure and Applied Chemistry, Eindhoven, 1985). 473.Google Scholar
  5. 5.
    H. Kuwahara, H. Matsuoka, Y. Tomii, S. Kikuchi, J. Takada andT. Takayama,J. Mater. Sci.,25 (1990) 4120.Google Scholar
  6. 6.
    L. E. Kindlimann andG. S. Ansell,Metall. Trans. 1 (1970) 163.Google Scholar
  7. 7.
    J. M. Silcock,Metal Sci. 14 (1978) 561.Google Scholar
  8. 8.
    B. Mortmer, P. Grieveson andK. H. Jack,Scand. J. Metall. 1 (1972) 203.Google Scholar
  9. 9.
    B. N. Chapman in “Glow Discharge Processes: Sputtering and Plasma Etching” (John Wiley & Sons, Inc., New York, 1980)Google Scholar
  10. 10.
    M. Hudis,J. Appl. Phys. 44 (1973) 1489.Google Scholar
  11. 11.
    Metals Data Book, edited by Japanese Society of Metals (Maruzen, Tokyo, 1974)Google Scholar
  12. 12.
    M. Tsuchiya, M. Izumiyama andY. Imai,J. Jpn. Inst. Metal. 29 (1965) 427.Google Scholar
  13. 13.
    G. Faninger andA. Freibmuth,Acta. Phys. Austrica,18 (1964) 280.Google Scholar
  14. 14.
    M. Kikuchi, T. Tanaka, K. Hamagami, Y. Ogura andR. Tanaka,Metall. Trans. 7A (1976) 906.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • H. Kuwahara
    • 1
  • H. Matsuoka
    • 1
  • I. Tamura
    • 1
  • J. Takada
    • 2
  • S. Kikuchi
    • 3
  • Y. Tomii
    • 3
  1. 1.Research Institute for Applied SciencesKyotoJapan
  2. 2.Department of Applied ChemistryOkayama UniversityOkayamaJapan
  3. 3.Department of Metal Science and TechnologyKyoto UniversityKyotoJapan

Personalised recommendations