Advertisement

Journal of Materials Science

, Volume 27, Issue 3, pp 611–615 | Cite as

Phase composition and properties of plasma-sprayed zirconia thermal barrier coatings

  • P. D. Harmsworth
  • R. Stevens
Papers

Abstract

The use of X-ray diffraction combined with TEM analysis has been used to study the crystalline structure and change in phase composition of zirconia coatings containing 6–12 wt% Y2O3. The optimum composition for maximum durability, observed for coatings within this composition range, is believed to be related to the microstructure developed on rapid cooling and to the volume fractions of t′, c and m phases formed during the evolution of the coating. The amount of these phases present in commercial thermal barrier coatings has been determined using X-ray diffraction and the mechanisms of toughening deduced from TEM examination of the sections of the coatings. The results obtained are discussed in relation to the degree of toughness and hence the thermal shock resistance which is a major factor in determining service life.

Keywords

Polymer Microstructure Zirconia Phase Composition Crystalline Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Evans, R. Stevens andJ. G. P. Binner,Brit. Ceram. Trans. J. 83 (1984) 39.Google Scholar
  2. 2.
    H. Toraya, M. Yoshimura andS. Somiya,J. Amer. Ceram. Soc. 67 (1984) C-183.Google Scholar
  3. 3.
    R. A. Millar, R. G. Smialek andR. G. Garlick, “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia” edited by A. H. Heuer and L. W. Stobbs (American Ceramic Society, Columbus, Ohio, 1981) p. 241.Google Scholar
  4. 4.
    H. G. Scott,J. Mater. Sci. 10 (1975) 1527.Google Scholar
  5. 5.
    B. D. Cullity, “Elements of X-ray Diffraction” (Addison-Wesley, Reading, MA, 1956).Google Scholar
  6. 6.
    J. R. Brandon andR. Taylor, in “Proceedings of the International Conference on Materials '87”, London, 1987 (Institute of Metals, London) pp. 69–77.Google Scholar
  7. 7.
    N. Ravi Shankar, H. Herman andC. C. Berndt,Ceram. Engng Sci. Proc. 4 (1983) 784.Google Scholar
  8. 8.
    R. Chaim, M. Ruhle andA. H. Heuer,J. Amer. Ceram. Soc. 68 (1985) 427.Google Scholar
  9. 9.
    V. Lanteri, A. H. Heuer andT. E. Mitchel,Adv. Ceram. 12 (1984) 118.Google Scholar
  10. 10.
    R. C. Garvie, R. H. Hannink andR. T. Pascoe,Nature 258 (1975) 703.Google Scholar
  11. 11.
    A.-H. Heuer andM. Ruhle, “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II” (American Ceramic Society, Columbus, Ohio) (1984) p. 1.Google Scholar
  12. 12.
    M. Ruhle, N. Claussen andA. H. Heuer, (eds),ibid. 12 (1984) 352.Google Scholar
  13. 13.
    G. W. Heintze andR. McPherson, “Advances in Ceramics”, Vol. 24a, “Science and Technology of Zirconia III”, (American Ceramic Society, Westerville, Ohio, 1986) p. 431.Google Scholar
  14. 14.
    C. C. Berndt andH. Herman, “Proceedings of the 10th International Conference on Thermal Spraging, Essen, FRG, DVS (German Welding Society, 1983) pp. 175–179.Google Scholar
  15. 15.
    P. A. Siemers andR. L. Mehan,Ceram. Engng Sci. Proc. 4 (1982) 828.Google Scholar
  16. 16.
    R. L. Mullen, B. L. Vleck, R. C. Hendricks andG. M. McDonald,Ceram. Engng Sci. Proc. 8 (1987) 582.Google Scholar
  17. 17.
    D. P. H. Hasselman,J. Amer. Ceram. Soc. 52 (1969) 600.Google Scholar
  18. 18.
    A. G. Evans,Adv. Ceram. 12 (1984) 193.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • P. D. Harmsworth
    • 1
  • R. Stevens
    • 1
  1. 1.School of MaterialsUniversity of LeedsLeedsUK

Personalised recommendations