Journal of Materials Science

, Volume 16, Issue 6, pp 1633–1642 | Cite as

The dependence of structure and conductivity in three-dimensional phosphate ionic conductors on composition

  • Masayuki Nagai
  • Satoru Fujitsu
  • Takafumi Kanazawa
  • Hiroaki Yanagida
Papers

Abstract

Two series of solid solutions, Na x Ca(1−x)/2Zr2(PO4)3 (NCZP(x), 0⩽x⩽1) and Na x Nb1-xZr1+x(PO4)3(NNZP(x), 0⩽x⩽1), were synthesized. They were examined by powder X-ray diffraction, infra-red (i.r.) absorption and Raman scattering. Ionic conductivities of graphite coated samples were measured. A complete series of solid solutions was formed for NCZP(x), while a second phase was found forx<0.1 for NNZP(x). The i.r. and Raman spectra of their solid solutions consistently showed the formation of PO4 tetrahedra with different geometries. The composition dependence of conductivity is interpreted on the basis of a structural change around Na+.

Keywords

Polymer Phosphate Graphite Solid Solution Structural Change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Gordon, G. R. Miller, T. D. Hadnagy, B. J. McEntire andJ. R. Rasmussen in “Energy and Ceramics”, edited by P. Vincenzini, (Elsevier Scientific, Amsterdam, 1980) p. 925.Google Scholar
  2. 2.
    M. Sljukić, B. Matković andB. Prodić,Croat. Chem. Acta 39 (1967) 145.Google Scholar
  3. 3.
    L. Hagman andP. Kierkegaard,Acta Chem. Scand. 22 (1968) 1822.Google Scholar
  4. 4.
    M. Nagai, S. Fujitsu andT. Kanazawa,J. Amer. Ceram. Soc. 63 (1980) 476.Google Scholar
  5. 5.
    M. Pintard-Screpel, F. D'Yvoire andF. Remy,C.R. Acad. Soc. 286 (1978) 381.Google Scholar
  6. 6.
    S. A. Okonenko, S. Yu. Stefanovich, V. B. Kalinin andYu. N. Venevtsev,Sov. Phys. Sol. Stat. 20 (1978) 1647.Google Scholar
  7. 7.
    N. G. Chernorkov, I. A. Korshov andT. V. Prokof'eva,Sov. Phys. Crystall. 23 (1979) 475.Google Scholar
  8. 8.
    B. E. Taylor, A. D. English andT. Berzins,Mater. Res. Bull. 12 (1977) 171.Google Scholar
  9. 9.
    H. Y-P. Hong,ibid. 11 (1976) 173.Google Scholar
  10. 10.
    V. Shomaker andD. P. Stevenson,J. Amer. Chem. Soc. 63 (1941) 37.Google Scholar
  11. 11.
    D. W. J. Cruickshank,J. Chem. Soc. (1961) 5486.Google Scholar
  12. 12.
    L. Pauling,J. Amer. Chem. Soc. 51 (1929) 1010.Google Scholar
  13. 13.
    E. Walley andJ. E. Bertie,J. Chem. Phys. 46 (1967) 1264.Google Scholar
  14. 14.
    K. Nakamoto (Ed.), in “Infra-red Spectra of Inorganic and Co-ordination Compounds”, (Wiley Interscience, New York, 1970) p. 113.Google Scholar
  15. 15.
    D. W. J. Cruickshank andE. A. Robinson,Spectrochim. Acta 22 (1966) 555.Google Scholar
  16. 16.
    A. Imai andM. Harata,Jap. J. Appl. Phys. 11 (1972) 180.Google Scholar
  17. 17.
    W. L. Roth, I. Chung andH. S. Story,J. Amer. Ceram. Soc. 60 (1977) 311.Google Scholar
  18. 18.
    J. A. Kafaras andR. J. Cava in “Fast Ion Transport in Solids”, edited by P. Vashishta, J. N. Mundy, G. Y. Shenoy, (North-Holland, Amsterdam, 1979) p.419.Google Scholar

Copyright information

© Chapman and Hall Ltd 1981

Authors and Affiliations

  • Masayuki Nagai
    • 1
  • Satoru Fujitsu
    • 1
  • Takafumi Kanazawa
    • 1
  • Hiroaki Yanagida
    • 2
  1. 1.Department of Industrial ChemistryFaculty of TechnologyTokyo Metropolitan UniversityTokyoJapan
  2. 2.Department of Industrial Chemistry, Faculty of EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations