Advertisement

Journal of Materials Science

, Volume 27, Issue 1, pp 101–106 | Cite as

Ostwald ripening of silver in glass

  • K. Yata
  • T. Yamaguchi
Papers

Abstract

The Ostwald ripening theory developed in metals and ceramics was applied to a silver-glass system. Experimental results showed that growth kinetics of silver particles obey the Ostwald ripening mechanism. The particle size distribution, however, was inconsistent with the theory, probably because of other factors not included in the Ostwald ripening theory. Modified equations failed to explain the experimental results. Values for the interfacial energy were obtained using the modified theory and sessile drop method.

Keywords

Polymer Particle Size Particle Size Distribution Growth Kinetic Interfacial Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Barycka andA. Misiuk,Mater. Sci. 7 (1981) 465.Google Scholar
  2. 2.
    K. Yajima andT. Yamaguchi,J. Mater. Sci. 19 (1984) 777.Google Scholar
  3. 3.
    Y. Chung andH. Kim,IEEE Trans. CHMT-11 (1988) 195.Google Scholar
  4. 4.
    D. N. Yoon andW. J. Huppman,Acta Metall. 27 (1979) 693.Google Scholar
  5. 5.
    W. A. Kayseer, S. Takajo andG. Petzow,ibid. 32 (1984) 115.Google Scholar
  6. 6.
    W. D. Kingery, E. Niki andM. D. Narasimhan,J. Amer. Ceram. Soc. 44 (1961) 29.Google Scholar
  7. 7.
    W. G. Morris,ibid. 56 (1973) 360.Google Scholar
  8. 8.
    G. W. Greenwood,Acta Metall. 4 (1956) 243.Google Scholar
  9. 9.
    I. M. Lifshitz andV. V. Slyozov,J. Phys. Chem. Solids 19 (1961) 35.Google Scholar
  10. 10.
    C. Wagner,Z. Elektrochemie 65 (1961) 581.Google Scholar
  11. 11.
    A. F. Smith,Acta Metall. 15 (1967) 1867.Google Scholar
  12. 12.
    A. J. Ardell andR. B. Nicholson,J. Phys. Chem. Solids 27 (1966) 1793.Google Scholar
  13. 13.
    A. J. Ardell,Metal. Trans. 1 (1970) 525.Google Scholar
  14. 14.
    T. K. Kang andD. N. Yoon,ibid. 9A (1978) 433.Google Scholar
  15. 15.
    C. H. Kang andD. N. Yoon,ibid. 12A (1981) 65.Google Scholar
  16. 16.
    S. S. Kang andD. N. Yoon,ibid. 13A (1982) 1405.Google Scholar
  17. 17.
    C. S. Jayanth andP. Nash,J. Mater. Sci. 24 (1989) 3041.Google Scholar
  18. 18.
    R. Ashimov,Acta Metall. 11 (1963) 72.Google Scholar
  19. 19.
    A. J. Ardell,ibid. 20 (1972) 61.Google Scholar
  20. 20.
    A. D. Brailsford andP. Wynblatt,ibid. 27 (1979) 489.Google Scholar
  21. 21.
    C. K. L. Davis, P. Nash andR. N. Stevens,ibid. 28 (1980) 179.Google Scholar
  22. 22.
    P. W. Voorhees andM. E. Glicksman,Metal. Trans. 15A (1984) 1081.Google Scholar
  23. 23.
    J. A. Marqusee andJ. Ross,J. Chem. Phys. 80 (1984) 563.Google Scholar
  24. 24.
    M. Tokuyama andK. Kawasaki,Physica 123A (1984) 368.Google Scholar
  25. 25.
    M. Tokuyama, K. Kawasaki andY. Enomoto,ibid. 134A (1986) 323.Google Scholar
  26. 26.
    K. Kawasaki, Y. Enomoto andM. Tokuyama,ibid. 135A (1986) 426.Google Scholar
  27. 27.
    R. D. Doherty,Met. Sci. 16 (1982) 1.Google Scholar
  28. 28.
    A. J. Ardell, R. B. Nicholson andJ. D. Eshelby,Acta Metall. 14 (1966) 1295.Google Scholar
  29. 29.
    A. G. Khaturyan, S. V. Semonovskaya andJ. W. Morris Jr,ibid. 36 (1988) 1563.Google Scholar
  30. 30.
    W. C. Jhonson, P. W. Voorhees andD. E. Zupon,Met. Trans. 20A (1989) 1175.Google Scholar
  31. 31.
    R. D. Vengenovitch,Acta Metall. 30 (1982) 1079.Google Scholar
  32. 32.
    L. Ratke andK. Thieringer,ibid. 33 (1985) 1793.Google Scholar
  33. 33.
    W. K. Thieringer andL. Ratke,ibid. 35 (1987) 1237.Google Scholar
  34. 34.
    J. M. Chaix, N. Eustathopwlos andC. H. Allibert,ibid. 34 (1986) 1589.Google Scholar
  35. 35.
    J. M. Chaix andC. H. Allibert,ibid. 34 (1986) 1593.Google Scholar
  36. 36.
    S. C. Yang andP. Nash,Mater. Sci. Tech. 4 (1988) 860.Google Scholar
  37. 37.
    E. E. Underwood, in “Quantitative Stereology” (Addison-Wesley, California, 1970).Google Scholar
  38. 38.
    F. Bashforth andJ. C. Adams, in “An Attempt to Test The Theory of Capillary Action by Comparing The Theoretical And Measured Form of Drop of Fluid” (Cambridge, Cambridge University Press, 1983).Google Scholar
  39. 39.
    R. Terai andR. Hayami,J. Non-Cryst. Solids 18 (1975) 217.Google Scholar
  40. 40.
    T. Kaneko,J. Phys. D 20 (1987) 489.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • K. Yata
    • 1
  • T. Yamaguchi
    • 1
  1. 1.Faculty of Science and TechnologyKeio UniversityYokahamaJapan

Personalised recommendations