Advertisement

Journal of Materials Science

, Volume 27, Issue 1, pp 13–23 | Cite as

Stress-strain behaviour at finite strains for various strain paths in polyethylene

  • Masayoshi Kitagawa
  • Tetsuyuki Onoda
  • Kazunobu Mizutani
Papers

Abstract

In order to provide new experimental facts required for constructing a non-linear constitutive equation for crystalline polymers, some tests were conducted by the use of polyethylene (PE) under various strain histories such as tension, torsion, tension-torsion proportional strain path, tension-torsion cruciform strain path, tension-torsion circular strain path, and various cyclic loadings. It is shown that (i) since the stress-strain behaviour for PE is not very sensitive to hydrostatic pressure, the equivalent stress and strain of von Mises type are useful for its description; (ii) the stress range at a constant strain amplitude at partly reversed cyclic loading tends to increase with an increase in the number of cycles, but the stress amplitude at fully reversed cyclic loading is nearly independent of the number of cycles; (iii) the degree of cyclic softening or hardening is relatively small compared with that of polypropylene; and (iv) under the conditions tested here, the effect of strain history on the stress-strain response is hardly observed for PE.

Keywords

Hydrostatic Pressure Cyclic Loading Strain Amplitude Stress Amplitude Strain Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Ward,J. Mater. Sci. 6 (1971) 1397.Google Scholar
  2. 2.
    R. M. Christensen, “Theory of Viscoelasticity”, (Academic, New York, 1971).Google Scholar
  3. 3.
    C. Bauwens-Crowet, J. C. Bauwens andG. Homes,J. Mater. Sci. 7 (1972) 176.Google Scholar
  4. 4.
    P. B. Bowden andJ. A. Jukes,ibid. 7 (1972) 52.Google Scholar
  5. 5.
    N. Brown andI. M. Ward,Phil. Mag. 18 (1968) 483.Google Scholar
  6. 6.
    D. Rabinowitz, I. M. Ward andJ. S. C. Parry,J. Mater. Sci. 5 (1970) 129.Google Scholar
  7. 7.
    C. Bauwens-Crowet, J. C. Bauwens andG. Homes,ibid. 8 (1973) 176.Google Scholar
  8. 8.
    R. E. Robertson,J. Chem. Phys. 44 (1966) 3950.Google Scholar
  9. 9.
    A. S. Argon,Phil. Mag. 28 (1973) 839.Google Scholar
  10. 10.
    P. B. Bowden andS. Raha,ibid. 29 (1974) 149.Google Scholar
  11. 11.
    D. M. Parks andM. C. Boyce, in “Constitutive Modeling for Nontraditional Materials”, edited by V. Stokes and D. Krajcinovic, ASME, AMD, New York, Vol. 85 (1987) p. 1.Google Scholar
  12. 12.
    T. A. Vest, J. Amoedo andD. Lee,ibid.in “ p. 71.Google Scholar
  13. 13.
    M. Kitagawa andT. Matsutani,J. Mater. Sci. 23 (1988) 4085.Google Scholar
  14. 14.
    M. Kitagawa, T. Mori andT. Matsutani,J. Polym. Sci. B 27 (1989) 85.Google Scholar
  15. 15.
    M. Kitagawa andH. Takagi,J. Mater. Sci. 25 (1990) 2869.Google Scholar
  16. 16.
    M. Kitagawa andT. Matsutani,J. Soc. Mater. Sci. Jpn 37 (1988) 29.Google Scholar
  17. 17.
    E. Krempl,Trans. ASME, J. Appl. Mech. 18 (1979) 380.Google Scholar
  18. 18.
    M. C. Liu andE. Krempl,J. Mech. Phys. Solids 27 (1979) 377.Google Scholar
  19. 19.
    M. Kitagawa andT. Yoneyama,J. Polymer Sci. C 26 (1988) 207.Google Scholar
  20. 20.
    M. Kitagawa, T. Yoneyama, J. Qui andK. Nishida,Jpn. Soc. Mech. Eng. A-57 (1991) 1680.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Masayoshi Kitagawa
    • 1
  • Tetsuyuki Onoda
    • 1
  • Kazunobu Mizutani
    • 1
  1. 1.Department of Mechanical EngineeringFaculty of Technology, Kanazawa UniversityKanazawaJapan

Personalised recommendations