Journal of Materials Science

, Volume 21, Issue 10, pp 3581–3589 | Cite as

Determination of the activation energies for nucleation and growth of crystal nuclei in metallic glasses

  • Q. C. Wu
  • M. Harmelin
  • J. Bigot
  • G. Martin


A mathematical procedure is proposed in order to determine separately the activation energy for nucleation,En, and for growth,Eg, from isothermal crystallization experiments on metallic glasses. Differential scanning calorimetry (DSC) is used in the isothermal mode to estimate the crystalline fraction as a function of time. The model deals only with polymorphic and eutectic growth. Cu60Zr40 amorphous alloys produced with different quenching rates are taken as an example for demonstrating the ability of the proposed method. It is shown that the number of pre-nuclei can be related to the conditions of the initial quench.


Polymer Crystallization Activation Energy Differential Scanning Calorimetry Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Koster andU. Herold, in “Glassy metals I”, edited by H. J. Guntherodt and H. Beck, Topics in Applied Physics, Vol. 46 (Springer Verlag, 1981) p. 225.Google Scholar
  2. 2.
    A. L. Greer, in “Rapidly Quenched Metals”, Proceedings of the 5th International Conference, edited by S. Steeb and H. Warlimont, Vol. I (North-Holland, 1985) p. 215.Google Scholar
  3. 3.
    C. V. Thomson, A. L. Greer andF. Spaepen,Acta Metall. 31 (1983) 1883.Google Scholar
  4. 4.
    S. Ranganathan andM. Von Heimendahl,J. Mater. Sci. 16 (1981) 2401.Google Scholar
  5. 5.
    M. G. Scott andP. Ramachandrarao,Mater. Sci. Engng. 29 (1977) 137.Google Scholar
  6. 6.
    E. G. Baburaj, G. K. Dey, M. J. Patni andR. Krishnan,Scripta Metall. 19 (1985) 305.Google Scholar
  7. 7.
    V. R. V. Ramanan andG. E. Fish,J. Appl. Phys. 53 (1982) 2273.Google Scholar
  8. 8.
    J. W. Christian, “The Theory of Transformations in Metals and Alloys” (Pergamon, 1975).Google Scholar
  9. 9.
    Z. Altounian, Tu Guo-Hua andJ. O. Stromolsen,J. Appl. Phys. 53 (1982) 4755.Google Scholar
  10. 10.
    K. H. J. Buschow,J. Appl. Phys. 52 (1981) 3319.Google Scholar
  11. 11.
    Idem, J. Phys. F: Met. Phys. 14 (1984) 593.Google Scholar
  12. 12.
    Y. Calvayrac, M. Harmelin, A. Quivy, J. P. Chevalier andJ. Bigot,J. Phys. Suppl. 8 41 (1980) C8–114.Google Scholar
  13. 13.
    M. Harmelin, Y. Calvayrac, A. Quivy, J. P. Chevalier andJ. Bigot,Scripta Metall. 16 (1982) 703.Google Scholar
  14. 14.
    J. P. Chevalier, Y. Calvayrac, A. Quivy, M. Harmelin andJ. Bigot,Acta Metall. 31 (1983) 465.Google Scholar
  15. 15.
    M. Lasocka andM. Harmelin,Scripta Metall. 18 (1984) 1091.Google Scholar
  16. 16.
    T. J. W. De Bruijn, W. A. De Jong andP. J. Van Den Berg,Thermochim. Acta 45 (1981) 315.Google Scholar
  17. 17.
    T. Kemeny andL. Granasy,J. Non-Cryst. Solids 68 (1984) 193.Google Scholar
  18. 18.
    K. Matusita, T. Komatsu andR. Yokota,J. Mater. Sci. 19 (1984) 291.Google Scholar
  19. 19.
    M. Harmelin, Y. Calvayrac, A. Quivy, J. Bigot, P. Burnier andM. Fayard,J. Non-Cryst. Solids 61/62 (1984) 931.Google Scholar
  20. 20.
    M. Harmelin, A. Sadoc, A. Naudon, A. Quivy andY. Calvayrac,ibid. 74 (1985) 107.Google Scholar
  21. 21.
    G. Martin, in “Solid State Phase Transformations in Metals and Alloys” (Les Editions de Physique, Orsay, 1978) p. 337.Google Scholar
  22. 22.
    Q. C. Wu, M. Harmelin, Y. Calvayrac andJ. Bigot, unpublished results.Google Scholar

Copyright information

© Chapman and Hall Ltd 1986

Authors and Affiliations

  • Q. C. Wu
    • 1
  • M. Harmelin
    • 1
  • J. Bigot
    • 1
  • G. Martin
    • 1
  1. 1.CNRS, Centre d'Etudes de Chimie MétallurgiqueVitry-sur-Seine CedexFrance

Personalised recommendations