Journal of Materials Science

, Volume 21, Issue 10, pp 3539–3547 | Cite as

High-temperature internal friction in polycrystalline Zircaloy-4

  • F. Povolo
  • B. J. Molinas


The high-temperature internal friction spectrum of polycrystalline Zircaloy-4 is investigated in detail, for a wide range of frequencies. Two internal friction maxima are observed. The lower-temperature peak is interpreted in terms of a relaxation mechanism produced by the sliding of particle-free grain boundaries. The higher-temperature peak is attributed to the sliding of boundaries blocked by small precipitates. Values for the activation enthalpy and the preexponential factor for diffusion along grain boundaries are given, and the viscosity coefficient associated with grain-boundary sliding is determined as a function of temperature.


Polymer Viscosity Enthalpy Internal Friction Preexponential Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Povolo andB. J. Molinas,J. Nucl. Mater. 114 (1983) 85.Google Scholar
  2. 2.
    J. L. Gacougnolle, S. Sarrazin andJ. de Fouquet,J. Physique 32 (1971) C2–21.Google Scholar
  3. 3.
    K. Bungardt andH. Preisendanz,Z. Metallkde 51 (1960) 280.Google Scholar
  4. 4.
    F. Povolo, A. F. Armas andB. J. Molinas,J. Phys. E 17 (1984) 121.Google Scholar
  5. 5.
    F. Povolo andB. J. Molinas, in “Strength of Metals and Alloys”, Vol. 1, edited by R. C. Gifkins (Pergamon Press, Oxford, 1983) p. 89.Google Scholar
  6. 6.
    A. S. Nowick andB. S. Berry, “Anelastic Relaxation in Crystalline Solids” (Academic Press, New York, 1972) pp. 58, 94.Google Scholar
  7. 7.
    I. G. Ritchie andK. W. Sprungmann, Atomic Energy of Canada Ltd. Report AECL-6810 (Pinawa, 1981).Google Scholar
  8. 8.
    F. Povolo andB. J. Molinas,J. Mater. Sci. 20 (1985) 3649.Google Scholar
  9. 9.
    Z. Q. Sun andT. S. Kê,J. Physique 42 (1981) C5–451.Google Scholar
  10. 10.
    H. E. Rosinger, I. G. Ritchie andA. J. Shillinglaw, Atomic Energy of Canada Ltd. Report AECL-5231 (Pinawa 1975).Google Scholar
  11. 11.
    F. Povolo andR. E. Bolmaro,J. Nucl. Mater. 118 (1983) 78.Google Scholar
  12. 12.
    F. Schückner, in “Quantitative Microscopy”, edited by R. T. DeHoff and F. N. Rhines (McGraw-Hill, New York, 1968) p. 201.Google Scholar
  13. 13.
    J. C. Colin andP. Lehr, in Proceedings of IXe Colloque de Métallurgie, Centre d'Etudes Nucléaires de Saclay, June 1965 (Presse Universitaires de France, 1966) p. 77.Google Scholar
  14. 14.
    A. S. Nowick andB. S. Berry,IBM J. 5 (1961) 297.Google Scholar
  15. 15.
    T. Mori, M. Koda, R. Monzen andT. Mura,Acta Metall. 31 (1983) 275.Google Scholar
  16. 16.
    F. Povolo andA. J. Marzocca,J. Nucl. Mater. 118 (1983) 224.Google Scholar
  17. 17.
    Idem, ibid. 119 (1983) 78.Google Scholar
  18. 18.
    H. Gleiter andB. Chalmers, in “Progress in Materials Science”, Vol. 16 (Pergamon Press, Oxford, 1972) p. 98.Google Scholar
  19. 19.
    D. R. Mosher andR. Raj,Acta Metall. 22 (1974) 1469.Google Scholar
  20. 20.
    Y. A. Shvedov,Scripta Metall. 13 (1979) 801.Google Scholar
  21. 21.
    M. F. Ashby,Surf. Sci. 31 (1972) 498.Google Scholar

Copyright information

© Chapman and Hall Ltd 1986

Authors and Affiliations

  • F. Povolo
    • 1
    • 2
  • B. J. Molinas
    • 3
  1. 1.Departamento de MaterialesComisión Nacional de Energia AtómicaBuenos Aires
  2. 2.Facultad de Ciencias Exactas y Naturales, Departamento de FisicaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de FisicaUniversidad Nacional de Rosario, Instituto de Fisica RosarioRosarioArgentina

Personalised recommendations