Theoretica chimica acta

, Volume 60, Issue 3, pp 269–281 | Cite as

A model study of the intermolecular interactions of amino acids in aqueous solution: The glycine-water system

  • Wolfgang Förner
  • Peter Otto
  • Julius Bernhardt
  • János J. Ladik
Original Investigations


We have performed calculations of the glycine zwitterion surrounded by water molecules with the help of the mutually consistent field (MCF) method and perturbation theoretical expressions. Two different models for the hydration shell have been chosen, the glycine·6H2O and glycine·12H2O complexes, representing the most probable first and second solvation shell, respectively. To calculate the exchange and charge transfer energy contributions we have applied approximative expressions derived from perturbation theory for weakly overlapping subunits. For the sake of comparison we also calculated the interaction energy in the supermolecule approach for the smaller of the two solvation complexes. Furthermore, we have investigated the part of the potential energy surface which is determined by varying the lengths of the hydrogen bonds between glycine and water in the complex glycine·12H2O using the electrostatic approach. The exchange energy contribution to the interaction energy for different points on the surface was approximated with the help of an analytical expression fitted to three directly calculated points. For the charge transfer energy a polynomial expansion of second order was established on the basis of five values, computed with the aid of the perturbation theoretical expression. To get a more detailed insight in the relatively strong hydrogen bonds between the water molecules and the ionic hydrophilic parts of glycineab initio model studies on NH 4 + ·3H2O and HCOO·3H2O systems are reported.

Key words

Mutually consistent field calculations solvation energies glycine-water-system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Otto, P., Ladik, J.: Chem. Phys.8, 192 (1975)Google Scholar
  2. 2.
    Otto, P., Ladik, J.: Chem. Phys.19, 209 (1977)Google Scholar
  3. 3.
    Otto, P.: Chem. Phys.33, 407 (1978)Google Scholar
  4. 4.
    Otto, P.: Chem. Phys. Lett.62, 538 (1979)Google Scholar
  5. 5.
    Pullman, B.: Adv. Quant. Chem.10, 251 (1977)Google Scholar
  6. 6.
    Port, G. N. J., Pullman, A.: Int. J. Quant. Chem.QBS 1, 21 (1974)Google Scholar
  7. 7.
    Pullman, A., Pullman, B.: Quart. Rev. Biophys.7, 505 (1975)Google Scholar
  8. 8.
    Port, G. N. J., Pullman, A.: FEBS Letters31, 70 (1973)Google Scholar
  9. 9.
    Dreyfus, M., Maigret, B., Pullman, A.: Theoret. Chim. Acta (Berl.)17, 109 (1970)Google Scholar
  10. 10.
    Berthold, H., Pullman, B.: Biochem. Biophys. Acta232, 595 (1971)Google Scholar
  11. 11.
    Diner, S., Malrieu, J. P., Claverie, P.: Theoret. Chim. Acta (Berl.)13, 1 (1969)Google Scholar
  12. 12.
    Malrieu, J. P., Claverie, P., Diner, S.: Theoret. Chim. Acta (Berl.)13, 18 (1969)Google Scholar
  13. 13.
    Diner, S., Malrieu, J. P., Jordan, F., Gilbert, M.: Theoret. Chim. Acta (Berl.)15, 110 (1969)Google Scholar
  14. 14.
    Beveridge, D. L., Kelly, M. M., Radna, R. J.: Int. J. Quant. Chem. Soc.96, 3769 (1974)Google Scholar
  15. 15.
    Hopfinger, A. J.: Conformational properties of macromolecules. New York: Academic Press 1973Google Scholar
  16. 16.
    Carozzo, L., Corongiu, G., Petrongolo, C., Clementi, E.: J. Chem. Phys.68, 787 (1978)Google Scholar
  17. 17.
    Rugassi, M., Ferro, D. R., Clementi, E.: J. Chem. Phys.70, 1040 (1979).Google Scholar
  18. 18.
    Clementi, E., Corongiu, G.: J. Chem. Phys.72, 3979 (1980)Google Scholar
  19. 19.
    Clementi, E., Corongiu, G.: Int. J. Quant. Chem.16, 897 (1979); Clementi, E.: Computational aspects for large chemical systems. Lecture Notes in Chemistry, Vol.19, p. 152. Heidelberg New York: Springer Verlag 1980Google Scholar
  20. 20.
    Ladik, J.: Electronic structure of polymers and molecular crystals. Ed. André, J.-M., Delhalle, J., Ladik, J., p. 663. New York: Plenum Press 1975Google Scholar
  21. 21.
    Ladik, J.: Int. J. Quant. Chem.QBS 1, 5 (1974)Google Scholar
  22. 22.
    Suhai, S., Ladik, J.: Acta Chim. Acad. Sci. Hung.82, 67 (1974)Google Scholar
  23. 23.
    Suhai, S.: Biopolymers13, 1731 (1974)Google Scholar
  24. 24.
    Beveridge, D. L., Jano, I., Ladik, J.: J. Chem. Phys.56, 4744 (1972)Google Scholar
  25. 25.
    Suhai, S., Kaspar, J., Ladik, J.: Int. J. Quant. Chem.17, 995 (1980)Google Scholar
  26. 26.
    Clementi, E.: Computational aspects for large chemical systems. Lecture Notes in Chemistry, Vol. 19, p. 102. Springer Verlag, Heidelberg-New York, 1980Google Scholar
  27. 27.
    Hehre, W., Stewart, R. F., Pople, J. A.: J. Chem. Phys.51, 2657 (1969)Google Scholar
  28. 28.
    Boys, S. F.: Rev. Mod. Phys.32, 306 (1966)Google Scholar
  29. 29.
    Gaissmaier, B., Hohecker, W., Unbehauen, R., Wehrhahn, W.: Frequenz Bd29, No. 5 (1975)Google Scholar
  30. 30.
    Sohalski, W. A., Chojnacki, H.: Int. J. Quant. Chem.13, 679 (1978)Google Scholar
  31. 31.
    Murrel, J. N., Randic, M., Williams, D. R.: Proc. Roy. Soc. A284, 566 (1965)Google Scholar
  32. 32.
    See Ref. [26], p. 101Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Wolfgang Förner
    • 1
  • Peter Otto
    • 1
  • Julius Bernhardt
    • 1
  • János J. Ladik
    • 1
  1. 1.Chair for Theoretical Chemistry at the Friedrich-Alexander-University Erlangen-NürnbergErlangenFederal Republic of Germany

Personalised recommendations