, Volume 80, Issue 6, pp 563–567 | Cite as

Localization of filipin-sterol complexes in cell membranes of eosinophils

  • P. F. P. Pimenta
  • W. de Souza


The polyene antibiotic filipin was used as a probe for the detection of cholesterol in the cell membranes of eosinophils isolated from the peritoneal exudate of rats. A homogenous distribution of filipin-sterol complexes was observed, both in thin sections and freeze-fracture replicas throughout the whole plasma membrane but not in the membrane of pynocytic vesicles, Golgi complex, endoplasmic reticulum, mitochondria and the nucleus. Few complexes were seen in freeze-fracture replicas showing the membrane of the specific granules. Treatment of living cells with filipin induced aggregation of filipin-sterol complexes at some points of the plasma membrane.


Public Health Cholesterol Cell Membrane Endoplasmic Reticulum Living Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews LD, Cohen AI (1979) Freeze-fracture evidence for the presence of cholesterol in particle-free patches of basal disks and the plasma membrane of retinal rod outer segments of mice and frogs. J Cell Biol 81:215–218Google Scholar
  2. Benchimol M, De Souza W (1984) Localization of Filipin-Sterol complexes in cell membranes ofTritrichomonas foetus. Exp Parasitol (in press)Google Scholar
  3. Betman R (1978) Sterol-polyene antibiotic complexation: probe of membrane structure. Lipids 13:686–691Google Scholar
  4. Brown D, Montesano R, Orci L (1982) Patterns of filipin-sterol complex distribution in intact erythrocytes and intramembrane particles-aggregated ghost membranes. J Histochem Cytochem 30:702–706Google Scholar
  5. Butterworth AE, Wasson DL, Gleich GJ, Loegerin DA (1979) Damage to schistosomula ofSchistosoma mansoni induced directly by eosinophil major basic proteins. J Immunol 122:221–229Google Scholar
  6. De Kruijjf B, Gerritsen WJ, Derlemans A, Demel RA, van Deenen LMN (1974) Polyene antibiotic-sterol interaction in membranes ofAcholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim Biophys Acta 339:30–43Google Scholar
  7. Elias PM, Friend DS, Goerke J (1979) Membrane sterol heterogeneity. Freeze-fracture detection with saponin and filipin. J Histochem Cytochem 27:1247–1260Google Scholar
  8. Fujita H, Ishimura K, Matsuda H (1981) Freeze-fracture images on filipin-sterol complexes in the thyroid follicle epithelial cell of mice with special regard to absence of cholesterol at the site of micropinocytosis. Histochemistry 73:57–63Google Scholar
  9. Greven H, Robenek H (1982) Filipin-induced lesions in plasma membrane of the Malpighian tubules inCarausis morosus BR (Phasmatodea, Phasmatidae). J Submicrosc Cytol 14:123–130Google Scholar
  10. Grove DI, Mahmoud AAF, Warren KS (1977) Eosoinophils and resistance toTrichinella spiralis. J Exp Med 145:755–759Google Scholar
  11. Kinsky SC (1970) Antibiotic interactions with model membranes. Annu Rev Pharmacol 10:119–142Google Scholar
  12. Mahmoud AAF, Warren KS, Peters PA (1975) A role for eosinophil in acquired resistance toSchistosoma mansoni infection as determined by anti-eosinophil serum. J Exp Med 142:805–813Google Scholar
  13. Montesano R, Perrelet A, Vassalli P, Orci L (1979) Absence of filipin-sterol complexes from large coated pits on the surface of cultured cells. Proc Natl Acad Sci USA 76:6391–6395Google Scholar
  14. Nakajima Y, Bridgman PC (1981) Absence of filipin-cholesterol complexes from the membranes of active zones and acethylcholine receptor aggregates at frog neuromuscular junctions. J Cell Biol 88:433–458Google Scholar
  15. Norman AW, Spielvolgel AM, Wong RG (1976) Polyene antibiotic sterol interaction. Adv Lip Res 14:127–170Google Scholar
  16. Orci L, Brown D (1983) Distribution of filipin-sterol complexes in plasma membranes of the kidney. II. The thin limbs of Henle's loop. Lab Invest 48:80–89Google Scholar
  17. Orci L, Montesano R, Brown D (1980) Heterogeneity of toad bladder granular cell luminal membranes. Distribution of filipinsterol complexes in freeze-fracture. Biochim Biophys Acta 601:443–452Google Scholar
  18. Pimenta PFP, De Souza W (1982a) Ultrastructure and cytochemistry of the cell surface of eosinophils. J Submicrosc Cytol 14(2):227–237Google Scholar
  19. Pimenta PFP, De Souza W (1982b) Surface charge of eosinophils. Binding of cationic particles and measurement of cellular electrophoretic mobility. Histochemistry 74:569–576Google Scholar
  20. Robenek H, Greven H (1981) Freeze-fracture evidence for high cholesterol content in nuclear membranes of a larval urodelan epidermis. Eur J Cell Biol 25:131–135Google Scholar
  21. Robenek H, Melkonian M (1981) Sterol-deficient domains correlate with intramembrane particle arrays in the plasma membrane ofChlamydomonas reinhardii. Eur J Cell Biol 25:258–264Google Scholar
  22. Robinson JM, Karnovsky MJ (1980a) Evaluation of the polyene antibiotic filipin as a cytochemical probe for membrane cholesterol. J Histochem Cytochem 28:161–168Google Scholar
  23. Robinson JM, Karnovsky MJ (1980b) Specialization in filopodial membranes at points of attachment to the substrate. J Cell Biol 87:562–568Google Scholar
  24. Sanderson CJ, De Souza W (1979) A morphological study of the interaction betweenTrypanosoma cruzi and rat eosinophils, neutrophils and macrophages in vitro. J Cell Sci 37:275–286Google Scholar
  25. Sanderson CJ, Jennifer TA (1978) A comparison of cytotoxic activity of eosinophils and other cells by chromium release and time lapse microcinematography. Immunology 34:771–780Google Scholar
  26. Shinitzky M, Henkart P (1980) Fluidity of cell membranes. Current concepts and trends. Int Rev Cytol 60:121–147Google Scholar
  27. Smithers SR, McLaren DJ, Ramalho-Pinto FJ (1977) Immunity to schistosome: the target. Am J Trop Med Hyg 26:11–19Google Scholar
  28. Sommer JR, Dolber PC, Taylor I (1982) Filipin-sterol complexes in the membranes of cardiac muscle. J Ultrastruct Res 80:98–103Google Scholar
  29. Souto-Padrón T, De Souza W (1983) Freeze-fracture localization of filipin-cholesterol complexes in the plasma membrane ofTrypanosoma cruzi. J Parasitol 69:129–137Google Scholar
  30. Thorne KJI, Glauert AM, Svvennsen RJ, Franks D (1979) Phagocytosis and killing ofTrypanosoma dionisii by human neutrophils, eosinophils and monocytes. Parasitology 79:367–379Google Scholar
  31. Tillack TW, Kinsky SC (1973) A freeze-etch study of the effects of filipin on liposomes and human erythrocyte membranes. Biochim Biophys Acta 323:43–54Google Scholar
  32. Verkleijf AJ, De Kruijjf, Genisten WF, Demel LLM, Van Deenen LLM, Ververgaert GJ (1973) Freeze-etch electron microscopy of erythrocytes,Acholeplasma laidlawi cells and liposomal membranes after the action of filipin and amphotericin B. Biochim Biophys Acta 291:577–581Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • P. F. P. Pimenta
    • 1
  • W. de Souza
    • 1
  1. 1.Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, and Laboratório de Ultraestrutura CelularUniversidade Federal do Rio de Janeiro, Ilha do Fundão, 21941Rio de JaneiroBrazil

Personalised recommendations