Advertisement

Journal of Materials Science

, Volume 26, Issue 24, pp 6631–6638 | Cite as

Determination of fibre/matrix interfacial shear strength by an acoustic emission technique

  • A. N. Netravali
  • Z. -F. Li
  • W. Sachse
  • H. F. Wu
Papers

Abstract

The application of acoustic emission (AE) measurements to locate the sources of fracture of a single high-strength fibre embedded in an epoxy matrix which is loaded in tension is described. From the micromechanical model and the fragment length distribution, interfacial shear strength values were calculated. The technique is demonstrated for small-diameter glass and graphite fibres as well as for fibres which exhibit fibrillar fracture, such as Kevlar and PBZT. Good agreement is found between the mean fragment length values obtained by optical and AE measurements for glass and graphite fibres. Values obtained for interfacial shear strength by the AE technique are comparable with those obtained using other techniques.

Keywords

Polymer Graphite Epoxy Shear Strength Acoustic Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. C. Chamis, in “Interfaces in Polymer Matrix Composites”, edited by E. P. Pluddemann (Academic Press, New York, 1974) pp. 31–77.Google Scholar
  2. 2.
    M. R. Piggott, in “Progress in Science and Engineering of Composites”, Proceedings of the 4th International Conference on Composite Materials (1982) p. 193.Google Scholar
  3. 3.
    P. S. Chua andM. R. Piggott,Compos. Sci. Tech. 22 (1985) 33.Google Scholar
  4. 4.
    Idem., ibid. 22 (1985) 185.Google Scholar
  5. 5.
    B. Miller, P. Muri andL. Rebenfeld,ibid. 28 (1987) 17.Google Scholar
  6. 6.
    H. F. Wu, C. M. Claypool andR. L. Rolf, unpublished data.Google Scholar
  7. 7.
    L. T. Drzal, M. J. Rich andP. F. Lloyd,J. Adhes. 16 (1982) 1.Google Scholar
  8. 8.
    L. T. Drzal, M. J. Rich, M. F. Koenig andP. F. Lloyd,ibid. 16 (1983) 133.Google Scholar
  9. 9.
    S. H. Own, R. V. Subramanian andS. C. Saunders,J. Mater. Sci. 21 (1986) 3912.Google Scholar
  10. 10.
    W. D. Bascom andR. M. Jensen,J. Adhes. 19 (1986) 219.Google Scholar
  11. 11.
    A. N. Netravali, R. B. Henstenburg, S. L. Phoenix andP. Schwartz,Polym. Compos. 10 (1989) 226.Google Scholar
  12. 12.
    A. N. Netravali, S. L. Phoenix andP. Schwartz,Polym. Compos. 10 (1989) 385.Google Scholar
  13. 13.
    A. Kelly andW. R. Tyson,J. Mech. Phys. Solids 13 (1965) 329.Google Scholar
  14. 14.
    A. Kelly,Proc. R. Soc. Lond. A319 (1970) 19.Google Scholar
  15. 15.
    A. S. Wimolkiatisak andJ. P. Bell,Poly. Compos. 10 (1989) 162.Google Scholar
  16. 16.
    R. B. Henstenburg andS. L. Phoenix,Poly. Compos.,10 (1989) 385.Google Scholar
  17. 17.
    L. T. Drzal, in “15th National SAMPLE Technical Conference” (1983) p. 190.Google Scholar
  18. 18.
    Idem., “The Interfacial and Compressive Properties of Polybenzothiozole Fibers”, Report AFWAL-TR-86-4003, June 1986.Google Scholar
  19. 19.
    Y. L. Petitcorps, R. Pailer andR. Naslain,Compos. Sci. Tech. 35 (1989) 207.Google Scholar
  20. 20.
    A. N. Netravali, L. T. Topoleski, W. H. Sachse andS. L. Phoenix,ibid. 35 (1989) 13.Google Scholar
  21. 21.
    L. Penn, F. Bystry, W. Karp, andS. Lee, in “Molecular Characterization of Composite Interfaces”, edited by H. Ishida and G. Kumar (Plenum Press, New York, 1984).Google Scholar
  22. 22.
    A. C. Cohen,Technometrics 7 (1965) 597.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • A. N. Netravali
    • 1
  • Z. -F. Li
    • 1
  • W. Sachse
    • 1
    • 2
  • H. F. Wu
    • 3
  1. 1.Department of Textiles and ApparelCornell UniversityIthacaUSA
  2. 2.Department of Theoretical and Applied MechanicsCornell UniversityIthacaUSA
  3. 3.Alcoa LaboratoriesAlcoa CenterUSA

Personalised recommendations