Journal of Materials Science

, Volume 26, Issue 24, pp 6553–6564 | Cite as

Fracture toughness evaluation for short glass fibre reinforced composites

  • C. L. Chow
  • T. J. Lu


Valid plane-stress fracture toughness evaluation of short fibre reinforced composites relies essentially on the successful separation of the energy absorbed in the localized crack-tip region out of the total energy absorbed by the cracked material body at large. Three different experimental techniques, all stemming from the energetic interpretation of theJ integral, are utilized and their relative merits in the characterization of fracture initiation in short glass fibre reinforced injection-moulded nylon 6.6 examined. Various theoretical aspects concerning these experimental methods are outlined. The rationale behind using a single-edge-notched tension type specimen for theJc test is presented. TheJc value obtained from the compliance calibration method and the quasistatic energy method agree closely and can be considered to be independent of pre-crack length and specimen geometry when the pre-crack length to specimen width ratio (a/w) is larger than 0.45. The extrapolation method fails nevertheless to yield a physically consistentJc value, possibly due to its questionable theoretical representation. As no constraint on boundary conditions is necessitated during the course of crack extension, the quasistatic energy is physically more appealing.


Fracture Toughness Crack Extension Fracture Initiation Short Fibre Specimen Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. K. Gaggar andL. J. Broutman,Fibre Sci. Tech. 9 (1976) 205.Google Scholar
  2. 2.
    Idem., ASTM STP 631 (American Society for Testing and Materials, Philadelphia, 1977) pp. 310–330.Google Scholar
  3. 3.
    M. J. Owen andP. T. Bishop,J. Compos. Mater. 7 (1973) 146.Google Scholar
  4. 4.
    R. M. Alexander, R. A. Schapery, K. L. Jerina andB. A. Sanders, ASTM STP 772 (American Society for Testing and Materials, Philadelphia, 1982) pp. 208–224.Google Scholar
  5. 5.
    T. M. Mower andV. C. Li,Engng Frac. Mech. 26 (1987) 593.Google Scholar
  6. 6.
    J. F. Mandell, D. D. Huang andF. J. McGarry, ASTM STP 772 (American Society for Testing and Materials, Philadelphia, 1982) pp. 3–32.Google Scholar
  7. 7.
    J. Karger-Kocsis andK. Friedrich,J. Mater. Sci. 22 (1987) 947.Google Scholar
  8. 8.
    A. A. Griffith,Phil. Trans. R. Soc. A211 (1921) 163.Google Scholar
  9. 9.
    Idem., ibid.,A221 (1920) 163.Google Scholar
  10. 10.
    J. Eftis andH. Liebowitz,Engng Frac. Mech. 7 (1974) 101.Google Scholar
  11. 11.
    J. R. Rice,J. Appl. Mech. 35 (1968) 379.Google Scholar
  12. 12.
    T. A. Begley andJ. D. Landes, ASTM STP 514 (American Society for Testing and Materials, Philadelphia, 1972) pp. 1–20.Google Scholar
  13. 13.
    Idem., ASTM STP 632 (American Society for Testing and Materials, Philadelphia, 1977) pp. 57–81.Google Scholar
  14. 14.
    B. D. Agarwal, B. S. Patro andP. Kumar,Engng Frac. Mech. 19 (1984) 675.Google Scholar
  15. 15.
    R. K. Singh andK. S. Parihar,J. Mater. Sci. 21 (1986) 3921.Google Scholar
  16. 16.
    B. H. Kim andC. R. Joe,Engng Frac. Mech. 30 (1988) 493.Google Scholar
  17. 17.
    Idem., ibid. 32 (1989) 233.Google Scholar
  18. 18.
    C. L. Chow, J. Wang andP. N. Tse,Tire Sci. Technol. 16 (1988) 44.Google Scholar
  19. 19.
    C. L. Chow andK. M. Ngan,J. Strain Anal. 12 (1977) 45.Google Scholar
  20. 20.
    Idem, Int. J. Frac. 14 (1978) 277.Google Scholar
  21. 21.
    C. L. Chow,J. Strain Anal. 17 (1982) 67.Google Scholar
  22. 22.
    C. L. Chow andP. M. Lam,J. Engng Mater. Technol. 96 (1974) 41.Google Scholar
  23. 23.
    C. L. Chow andK. M. Ngan,J. Strain Anal. 13 (1978) 115.Google Scholar
  24. 24.
    H. W. Liu, ASTM STP 381 (American Society for Testing and Materials, Philadelphia, 1964) pp. 23–26.Google Scholar
  25. 25.
    Idem., Engng Frac. Mech. 17 (1983) 425.Google Scholar
  26. 26.
    R. M. McMeeking andD. M. Parks, ASTM STP 668 (American Society for Testing and Materials, Philadelphia, 1979) pp. 175–194.Google Scholar
  27. 27.
    J. W. Hutchinson,J. Mech. Phys. Solids 16 (1968) 13.Google Scholar
  28. 28.
    J. R. Rice andG. F. Rosengren,J. Mech. Phys. Solids 16 (1968) 1.Google Scholar
  29. 29.
    W. L. Hu, A. S. Kuo andH. W. Liu, in Proceedings of the 12th Annual Meeting of Soc. of Engng. Sci. Austin, TX, 1975.Google Scholar
  30. 30.
    W. L. Hu andH. W. Liu, in Proceedings of the 2nd International Conference on Mechanical Behavior, Boston, MA, 1976.Google Scholar
  31. 31.
    H. W. Liu andT. Zhuang,Theor. Appl. Frac. Mech. 7 (1987) 149.Google Scholar
  32. 32.
    T. Zhuang andH. W. Liu,Int. J. Frac. 27 (1985) R87.Google Scholar
  33. 33.
    B. H. Kim andC. R. Joe,ibid. 34 (1987) R57.Google Scholar
  34. 34.
    J. Eftis andD. L. Jones,ibid. 20 (1982) 267.Google Scholar
  35. 35.
    J. Eftis,Engng Frac. Mech. 26 (1987) 567.Google Scholar
  36. 36.
    J. R. Rice,J. Mech. Phys. Solids 22 (1974) 17.Google Scholar
  37. 37.
    J. Eftis, N. Subramonian andH. Liebowitz,Engng Frac. Mech. 9 (1977) 189.Google Scholar
  38. 38.
    L. H. Larsson, in “Advances in Elasto-Plastic Fracture Mechanics” (Elsevier Applied Science Publishers, London, 1979) pp. 69–73.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • C. L. Chow
    • 1
  • T. J. Lu
    • 1
  1. 1.Department of Mechanical EngineeringSouthern Illinois University at EdwardsvilleEdwardsvilleUSA

Personalised recommendations