Biochemical Genetics

, Volume 27, Issue 9–10, pp 571–589 | Cite as

Biochemical characterization of genotypes at the phosphoglucomutase-2 locus in the pacific oyster,Crassostrea gigas

  • Grant H. Pogson
Article

Abstract

The four most common allozymes at thePgm-2 locus inCrassostrea gigas were purified and characterized over physiological ranges of temperature andpH. Significant differences were observed between genotypes in their apparent Michaelis constants for glucose-1-phosphate and glucose-1,6-diphosphate,Vmax/K m ratios,pH-dependent activities, and temperature stabilities. These functional differences were caused almost exclusively by the divergent properties of thePgm-292 allozyme; limited differentiation existed among thePgm-296,Pgm-2100, andPgm-2104 variants. Heterozygotes displayed strict intermediacy for all kinetic and structural properties examined. The results are discussed in light of their ability to account for the overdominant body weights ofPgm-2 heterozygotes reported by Fujio (1982). It is concluded that overdominance is unlikely to arise at this locus as a consequence of these biochemical differences because of their limited magnitude and incompatibility with allelic frequencies in natural populations.

Key words

phosphoglucomutase allozymes enzyme kinetics heterozygosity Crassostrea gigas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamkewicz, L., Taub, S. R., and Wall, J. R. (1984). Genetics of the clamMercenaria mercenaria. II. Size and genotype.Malacologia 25525.Google Scholar
  2. Beaumont, A. R., Gosling, E. M., Beveridge, C. M., Budd, M. D., and Burnell, G. M. (1985). Studies on heterozygosity and size in the scallop,Pecten maximus (L.). In Gibbs, P. (ed.),Proc. 19th Eur. Mar. Biol. Symp. Cambridge University Press, Cambridge, p. 443.Google Scholar
  3. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248.CrossRefPubMedGoogle Scholar
  4. Buroker, N. E. (1975).A Survey of Protein Variation in Populations of the Pacific Oyster, Crassostrea gigas, M.Sc. thesis, University of Washington.Google Scholar
  5. Burton, R. S., and Feldman, M. W. (1983). Physiological effects of an allozyme polymorphism: Glutamate-pyruvate transaminase and response to hyperosmotic stress in the copepodTigriopus californicus.Biochem. Genet. 21239.PubMedGoogle Scholar
  6. Chakraborty, R. (1989). Can molecular imprinting explain heterozygote deficiency and hybrid vigor?Genetics 122713.PubMedGoogle Scholar
  7. Clarke, B. (1975). The contribution of ecological genetics to evolutionary theory: Detecting the direct effects of natural selection on particular polymorphic loci.Genetics 79101.PubMedGoogle Scholar
  8. Cornish-Bowden, A. (1985). A fortran program for robust regression of enzyme kinetic data.Techniques in the Life Sciences. BI/II Supplement.Protein and Enzyme Biochemistry BS1151.Google Scholar
  9. Currie, D. J. (1982). Estimating Michaelis-Menten parameters: Bias, variance and experimental design.Biometrics 38907.Google Scholar
  10. de Zwaan, A. (1983). Carbohydrate catabolism in bivalves. In Hochachka, P. W. (ed.),The Mollusca, Vol. 1. Metabolic Biochemistry and Molecular Biomechanics Academic Press, New York, p. 137.Google Scholar
  11. Diehl, W. J., and Koehn, R. K. (1985). Multiple-locus heterozygosity, mortality, and growth in a cohort ofMytilus edulis.Mar. Biol. 88265.Google Scholar
  12. Diehl, W. J., Gaffney, P. M., McDonald, J. H., and Koehn, R. K. (1985). Relationship between weight-standardized oxygen consumption and multiple-locus heterozygosity in the mussel,Mytilus edulis. In Gibbs, P. (ed.),Proc. 19th Eur. Mar. Biol. Symp. Cambridge University Press, Cambridge, p. 529.Google Scholar
  13. Duggleby, R. G. (1979). Experimental designs for estimating the kinetic parameters for enzyme-catalysed reactions.J. Theor. Biol. 81671.PubMedGoogle Scholar
  14. Eisenthal, R., and Cornish-Bowden, A. (1974). The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters.Biochem. J. 139715.PubMedGoogle Scholar
  15. Foltz, D. W. (1986). Null alleles as a possible cause of heterozygote deficiencies in the oysterCrassostrea virginica.Evolution 40869.Google Scholar
  16. Fucci, L., Gaudio, L., Rao, R., Spano, A., and Carfagna, M. (1979). Properties of the two common electrophoretic variants of phosphoglucomutase inDrosophila melanogaster.Biochem. Genet. 17825.PubMedGoogle Scholar
  17. Fujio, Y. (1982). A correlation of heterozygosity with growth rate in the Pacific oyster,Crassostrea gigas.Tohoku J. Agr. Res. 33825.Google Scholar
  18. Gabbott, P. A. (1983). Developmental and seasonal metabolic activities in marine molluscs. In Hochachka, P. W. (ed.),The Mollusca, Vol. 2. Environmental Biochemistry and Physiology Academic Press, New York, p. 165.Google Scholar
  19. Gentili, M. R., and Beaumont, A. R. (1988). Environmental stress, heterozygosity, and growth rate inMytilus edulis L.J. Exp. Mar. Biol. Ecol. 120145.Google Scholar
  20. Green, R. H., Singh, S. M., Hicks, B., and McCuaig, J. M. (1983). An arctic intertidal population ofMacoma balthica (Mollusca, Pelecypoda): Genotypic and phenotypic components of population structure.Can. J. Fish. Aquat. Sci. 401360.Google Scholar
  21. Hall, J. G. (1985). Temperature-related kinetic differentiation of glucosephosphate isomerase alleloenzymes isolated from the blue mussel,Mytilus edulis.Biochem. Genet. 23705.PubMedGoogle Scholar
  22. Hashimoto, T., and Handler, P. (1966). Phosphoglucomutase. III. Purification and properties of phosphoglucomutases from flounder and shark muscle.J. Biol. Chem. 2413940.PubMedGoogle Scholar
  23. Hawkins, A. J. S., Bayne, B. L., and Day, A. J. (1986). Protein turnover, physiological energetics and heterozygosity in the blue mussel,Mytilus edulis: The basis of variable age-specific growth.Proc. R. Soc. Lond. B 229161.Google Scholar
  24. Hickey, D. A. (1977). Selection for amylase allozymes inDrosophila melanogaster.Evolution 31800.Google Scholar
  25. Hoffman, R. J. (1981). Evolutionary genetics ofMetridium senile. I. Kinetic differences in phosphoglucose isomerase allozymes.Biochem. Genet. 19129.PubMedGoogle Scholar
  26. Hoffman, R. J. (1985). Properties of allelic variants of phosphoglucomutase from the sea anemoneMetridium senile.Biochem. Genet. 23859.PubMedGoogle Scholar
  27. Joshi, J. G., Hooper, J., Kuwaki, T., Sakurada, T., Swanson, J. R., and Handler, P. (1967). Phosphoglucomutase. V. Multiple forms of phosphoglucomutase.Proc. Natl. Acad. Sci. USA 571482.PubMedGoogle Scholar
  28. Koehn, R. K. (1978). Physiology and biochemistry of enzyme variation: The interface of ecology and population genetics. In Brussard, P. F. (ed.),Ecological Genetics: The Interface Springer-Verlag, New York, p. 51.Google Scholar
  29. Koehn, R. K., and Gaffney, P. M. (1984). Genetic heterozygosity and growth rate inMytilus edulis.Mar. Biol. 821.Google Scholar
  30. Koehn, R. K., and Hilbish, T. J. (1987). The adaptive significance of genetic variation.Am. Sci. 75134.Google Scholar
  31. Koehn, R. K., and Shumway, S. E. (1982). A genetic/physiological explanation for differential growth rate among individuals of the American oyster,Crassostrea virginica (Gmelin).Mar. Biol. Lett. 335.Google Scholar
  32. Koehn, R. K., Diehl, W. J., and Scott, T. M. (1988). The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam,Mulinia lateralis.Genetics 118121.PubMedGoogle Scholar
  33. Kristjansson, F. D. (1963). Genetic control of two pre-albumins in pigs.Genetics 481059.PubMedGoogle Scholar
  34. Mitton, J. B., and Grant, M. C. (1984). Associations among protein heterozygosity, growth rate and developmental stability.Annu. Rev. Ecol. Syst. 15479.Google Scholar
  35. Neter, J., Wasserman, W., and Kutner, M. H. (1985).Applied Linear Statistical Models; Regression, Analysis of Variance, and Experimental Designs, 2nd ed. Irwin, Homewood, Ill.Google Scholar
  36. Oakeshott, J. G., Chambers, G. K., Gibson, J. B., and Wilcocks, D. A. (1981). Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies inDrosophila melanogaster.Heredity 47385.PubMedGoogle Scholar
  37. Oakeshott, J. G., Gibson, J. B., Anderson, P. R., Knibb, W. R., Anderson, D. G., and Chambers, G. K. (1982). Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines inDrosophila melanogaster on different continents.Evolution 3686.Google Scholar
  38. Ohta, T. (1971). Associative overdominance caused by linked detrimental mutations.Genet. Res. Cambr. 18277.Google Scholar
  39. Ozaki, H., and Fujio, Y. (1985). Genetic differentiation in geographical populations of the Pacific oyster (Crassostrea gigas) around Japan.Tohoku J. Agr. Res. 3649.Google Scholar
  40. Place, A. R., and Powers, D. A. (1984). Purification and characterization of the lactate dehydrogenase (LDH-B4) allozymes ofFundulus heteroclitus.J. Biol. Chem. 2591299.PubMedGoogle Scholar
  41. Pogson, G. H. (1988).Biochemical Studies on the Expression of Overdominance at the Phosphoglucomutase-2 locus in the Pacific Oyster, Crassostrea gigas (Thunberg), Ph.D. dissertation, University of British Columbia.Google Scholar
  42. Quayle, D. B. (1969). Pacific oyster culture in British Columbia.Bull. Fish. Res. Board Can. No. 169.Google Scholar
  43. Ray, W. J., Jr., and Peck, E. J., Jr. (1972). Phosphomutases. In Boyer, P. D. (ed.),The Enzymes, Vol. VI 3rd ed., Academic Press, New York, p. 407.Google Scholar
  44. Ray, W. J., Jr., and Roscelli, G. A. (1964). A kinetic study of the phosphoglucomutase pathway.J. Biol. Chem. 2391228.PubMedGoogle Scholar
  45. Rodhouse, P. G., and Gaffney, P. M. (1984). Effect of heterozygosity on metabolism during starvation in the American oyster,Crassostrea virginica. Mar. Biol. 80179.Google Scholar
  46. Rodhouse, P. G., McDonald, J. H., Newell, R. I. E., and Koehn, R. K. (1986). Gamete production, somatic growth and multiple-locus heterozygosity inMytilus edulis.Mar. Biol. 90209.Google Scholar
  47. Schwartz, D., and Laughner, W. J. (1969). A molecular basis for heterosis.Science 166626.Google Scholar
  48. Singh, R. S., Hubby, J. L., and Lewontin, R. C. (1974). Molecular heterosis for heat-sensitive enzyme alleles.Proc. Natl. Acad. Sci. USA 711808.PubMedGoogle Scholar
  49. Smouse, P. E. (1986). The fitness consequences of multiple-locus heterozygosity under multiplicative overdominance and inbreeding depression models.Evolution 40946.Google Scholar
  50. Sokal, R. R., and Rohlf, F. J. (1981).Biometry 2nd ed., W. H. Freeman, San Francisco.Google Scholar
  51. Spencer, N., Hopkinson, D. A., and Harris, H. (1964). Phosphoglucomutase polymorphism in man.Nature 204742.PubMedGoogle Scholar
  52. Thiriot-Quiévreux, C. (1986). Etude de l'aneuploïdie dans différents naissains d'Ostreidae (Bivalvia).Genetica 106225.Google Scholar
  53. Turelli, M., and Ginzburg, L. R. (1983). Should individual fitness increase with heterozygosity?Genetics 104191.PubMedGoogle Scholar
  54. Wallace, B. (1959). The role of heterozygosity inDrosophila populations.Proc. 10th Int. Cong. Genet. 1408.Google Scholar
  55. Walsh, P. J., McDonald, D. G., and Booth, C. E. (1984). Acid-base balance in the sea mussel,Mytilus edulis. II. Effects of hypoxia and air exposure on intracellular acid-base status.Mar. Biol. Lett. 5359.Google Scholar
  56. Ward, R. D., and Beardmore, J. A. (1977). Protein variation in the plaice,Pleuronectes platessa L.Genet. Res. Camb. 3045.Google Scholar
  57. Watt, W. B. (1977). Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase ofColias butterflies: Biochemical and population aspects.Genetics 87177.PubMedGoogle Scholar
  58. Watt, W. B. (1983). Adaptation at specific loci. II. Demographic and biochemical elements in the maintenance of theColias PGI polymorphism.Genetics 103691.Google Scholar
  59. Watt, W. B. (1985). Bioenergetics and evolutionary genetics: opportunities for new synthesis.Am. Nat. 125118.Google Scholar
  60. Wijsman, T. C. M. (1975). pH fluctuations inMytilus edulis L. in relation to shell movements under aerobic and anaerobic conditions. In Barnes, H. (ed.),Proc. 9th Eur. Mar. Biol. Symp. Aberdeen University Press, Aberdeen, p. 139.Google Scholar
  61. Zera, A. J. (1987). Temperature-dependent kinetic variation among phosphoglucose isomerase allozymes from the wing-polymorphic water strider,Limnoporus canaliculatus.Mol. Biol. Evol. 4266.PubMedGoogle Scholar
  62. Zouros, E. (1987). On the relation between heterozygosity and heterosis: An evaluation of the evidence from marine mollusks.Isozymes Curr. Top. Biol. Med. Res. 15255.PubMedGoogle Scholar
  63. Zouros, E., and Foltz, D. W. (1987). The use of allelic isozyme variation for the study of heterosis.Isozymes Curr. Top. Biol. Med. Res. 131.PubMedGoogle Scholar
  64. Zouros, E., Singh, S. M., and Miles, H. E. (1980). Growth rate in oysters: An overdominant phenotype and its possible explanations.Evolution 34856.Google Scholar
  65. Zouros, E., Singh, S. M., Foltz, D. W. and Mallet, A. L. (1983). Post-settlement viability in the American oyster (Crassostrea virginica): An overdominant phenotype.Genet. Res. Camb. 41259.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Grant H. Pogson
    • 1
  1. 1.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations