Skip to main content
Log in

Extinction of peroxisomal functions in hepatoma cell-fibroblast hybrids

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Although peroxisomes are ubiquitous, differences in the number of organelles and in the expression of associated metabolic activities are observed, depending on the cell type. To investigate the control of peroxisomal activity in connection with cell differentiation, we constructed hybrids between two types of cells whose histogenetic origins dictate significant differences in peroxisomal activities: hepatoma cells and fibroblasts, with high and low expression, respectively, of peroxisomal functions. In these hybrids, extinction of the elevated activities that characterize liver cells is observed, in parallel with the well-documented extinction of differentiated functions. This suggests the existence in fibroblasts of a negative trans-acting regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auffray, C., and Rougeon, F. (1980). Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA.Eur. J. Biochem. 107303.

    Google Scholar 

  • Benoit, C., and Chambon, P. (1981).In vivo sequence requirements of the SV40 early promoter region.Nature 290304.

    Google Scholar 

  • Bioukar, E. B., Straehli, F., Ng, K. H., Rolland, M. O., Hashimoto, T., Carreau, J. P., and Deschatrette, J. (1994). Resistance to erucic acid as a selectable marker for peroxisomal activity: Isolation of revertants of an infantile Refum disease cell line.J. Inherit. Metab. Dis. 1741.

    Google Scholar 

  • Borst, P. (1989). Peroxisomes biogenesis revisited.Biochim. Biophys. Acta 10081.

    Google Scholar 

  • Boshart, M., Weih, F., Nichols, M., and Schütz, G. (1991). The tissue-specific extinguisher locus TSE1 encodes a regulatory subunit of cAMP-dependent protein kinase.Cell 66849.

    Google Scholar 

  • Carreau, J. P., Frommel, D., Nguyen, T. T., and Mazliak, P. (1980). Hepatic Δ9 and Δ6 desaturase activities during the recovery period following carbon tetrachloride poisoning.Lipids 15631.

    Google Scholar 

  • Coon, J. P., and Weiss, M. C. (1969). A quantitative comparison of formation of spontaneous and virus-produced viable hybrids.Proc. Natl. Acad. Sci. USA 62852.

    Google Scholar 

  • de Duve, C., Beaufay, H., Jacques, P.,et al. (1960). Intracellular distribution of catalase and of some oxidases in rat liver.Biochim. Biophys. Acta 40186.

    Google Scholar 

  • Deschatrette, J., and Weiss, M. C. (1974). Characterization of differentiated and dedifferentiated clones from a rat hepatoma.Biochimie 561603.

    Google Scholar 

  • Deschatrette, J., Moore, E. E., Dubois, M., and Weiss, M. C. (1980). Dedifferentiated variants of a rat hepatoma: Reversion analysis.Cell 191043.

    Google Scholar 

  • Desmaze, C., Deleuze, J. F., Dutrillaux, A. M., Thomas, G., Hadchouel, M., and Aurias, A. (1992). Screening of microdeletions of chromosome 20 in patients with Alagille syndrome.J. Med. Genet. 29233.

    Google Scholar 

  • Driesen, M. S., Dauwerse, J. G., Wapenaar, M. C., Meershoek, A. J., Mollevanger, P., Chen, K. L., Fischbeck, K. H., and van Ommen, G. J. B. (1991). Generation and fluorescent in situ hybridization mapping of yeast artificial chromosomes of 1p, 17p, 17q and 19q from a hybrid cell line by high-density screening of an amplified library.Genomics 111079.

    Google Scholar 

  • Ephrussi, B. (1972).Hybridization of Somatic Cells Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Fougère, C., and Weiss, M. C. (1978). Phenotypic exclusion in mouse melanoma-rat hepatoma hybrids cells: Pigment and albumin production are not reexpressed simultaneously.Cell 15843.

    Google Scholar 

  • Griffo, G., Hamon-Benais, C., Angrand, P. O., Fox, M., West, L., Lecoq, O., Povey, S., Cassio, D., and Weiss, M. (1993). HNF4 and HNF1 as well as a panel of hapatic functions are extiguished and reexpressed in parallel in chromosomally reduced rat hepatoma-human fibroblast hybrids.J. Cell Biol. 4887.

    Google Scholar 

  • Hajra, A. K., Burke, C. L., and Jones, C. L. (1979). Subcellular localization of acyl coenzyme A: Dihydroxyacetone phosphate acyltransferase in rat liver peroxisomes (microbodies).J. Biol. Chem. 25410896.

    Google Scholar 

  • Ham, R. G. (1965). Clonal growth of somatic cells in a chemically defined synthesis medium.Proc. Natl. Acad. Sci. USA 53288.

    Google Scholar 

  • Hijikata, M., Ishii, N., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987). Structural analysis of cDNA for rat peroxisomal 3-ketoacyl-CoA thiolase.J. Biol. Chem. 2628151.

    Google Scholar 

  • Hruban, Z., Vigil, E. L., Slesers, A.,et al. (1972). Constituent organelles of animal cells.Lab. Invest. 27184.

    Google Scholar 

  • Jakobs, B. S., and Wanders, R. J. A. (1991). Conclusive evidence that very long chain fatty acids are oxidized exclusively in peroxisomes in human skin fibroblasts.Biochem. Biophys. Res. Commun. 178842.

    Google Scholar 

  • Johansson, L. H., and Borg, L. A. H. (1988). A spectrophotometric method for determination of catalase activity in small tissue samples.Anal. Biochem. 174331.

    Google Scholar 

  • Kase, F., Björkhem, I., and Pederson, J. I. (1983). Formation of cholic acid from 3α, 7α, 12α-trihydroxy-5-β-cholestanoic acid by rat liver peroxisomes.J. Lipid Res. 241560.

    Google Scholar 

  • Keller, J. M., Cablé, S., El Bouhtoury, F., Heusser, S., Scotto, C., Armbruster, L., Ciolek, E., Colin, S., Schilt, J., and Dauça, M. (1993). Peroxisome through cell differentiation and neoplasia.Biol. Cell 7777.

    Google Scholar 

  • Killary, A. M., and Fournier, R. E. K. (1984). A genetic analysis of extinction: trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells.Cell 38523.

    Google Scholar 

  • Lazarow, P. B. (1978). Rat liver peroxisomes catalyse the β-oxidation of fatty acids.J. Biol. Chem. 2531522.

    Google Scholar 

  • Lazarow, P. B. (1988). Peroxisomes. In Arias, L. M., Jakoby, W. B., Pepper, H., Schachter, D., and Shafritz, D. A. (eds.),The Liver Biology and Pathobiology Raven Press, New York, pp. 241–254.

    Google Scholar 

  • Lazarow, P. B., and de Duve, C. (1976). A fatty acyl-CoA oxidizing system in rat liver peroxisomes; Enhancement by clofibrate, a hypolipidemic drug.Proc. Natl. Acad. Sci. USA 732043.

    Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Mevel-Ninio, M., and Weiss, M. C. (1981). Immunofluorescence analysis of the time course of extinction re-expression and activation of albumin production in rat hepatoma-mouse fibroblast heterokaryons and hybrids.J. Cell Biol. 90339.

    Google Scholar 

  • Miyazawa, S., Hayashi, H., Hijikata, M., Ishii, N., Furuta, S., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987). Complete nucleotide sequence and predicted amino acid sequence of rat acyl-CoA oxidase.J. Biol. Chem. 2628131.

    Google Scholar 

  • Noguchi, T., and Takada, Y. (1984). Peroxisomal localization of serine: Pyruvate aminotransferase in human liver.J. Biol. Chem. 2537598.

    Google Scholar 

  • Novikoff, A. B., Novikoff, P. M., Davis, C.,et al. (1973). Studies on microperoxisomes. V. Are microperoxisomes ubiquitous in mammalian cells?J. Histochem. Cytochem. 21737.

    Google Scholar 

  • Osumi, T., and Hashimoto, T. (1984). The inducible fatty acid oxidation system in mammalian peroxisomes.Trends Biochem. Sci. 9317.

    Google Scholar 

  • Osumi, T., Hashimoto, T., and Ui, N. (1980). Purification and properties of acyl-CoA oxidase from rat liver.J. Biochem. 871735.

    Google Scholar 

  • Petit, C., Levilliers, J., Ott, M. O., and Weiss, M. C. (1986). Tissue-specific expression of the rat albumin gene: Genetic control of its extinction in microcell hybrids.Proc. Natl. Acad. Sci. USA 832561.

    Google Scholar 

  • Pitot, H. C., Peraino, C., Morse, P. A., and Potter, V. R. (1964). Hepatoma in tissue culture compared with adapting liverin vivo.Natl. Cancer Inst. Monogr. 13229.

    Google Scholar 

  • Reuber, M. D. (1961). A transplantable bile-secreting hepatocellular carcinoma in the rat.J. Natl. Cancer Inst. 26891.

    Google Scholar 

  • Ringertz, N., and Savage, R. E. (1976).Cell Hybrids Academic Press, New York.

    Google Scholar 

  • Singh, H., Derwas, N., and Poulos, A. (1987). β-Oxidation of very long chain fatty acids and their coenzyme A derivatives by human skin fibroblasts.Arch. Biochem. Biophys. 154526.

    Google Scholar 

  • Singh, H., Usher, S., and Poulos, A. (1989). Dihydroxyacetone phosphate acyl transferase and lakyl dihydroxyacetone phosphate acyl synthase activities in rat liver subcellular fibroblasts.Arch. Biochem. Biophys. 268676.

    Google Scholar 

  • Thompson, S. L., Burrows, R., Laub, R. J., and Krisans, S. K. L. (1987). Cholesterol synthesis in rat liver peroxisomes: Conversion of mevalonic acid to cholesterol.J. Biol. Chem. 26217420.

    Google Scholar 

  • Weiss, M. C. (1982). Cell hybridization: A tool for the study of cell differentiation. InSomatic Cell Genetics NATO Adv. Study Inst. Ser. A, Plenum Press, New York, pp. 169–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bioukar, E.B., Sarrazin, S., Conti, M. et al. Extinction of peroxisomal functions in hepatoma cell-fibroblast hybrids. Biochem Genet 34, 77–91 (1996). https://doi.org/10.1007/BF00553605

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553605

Key words

Navigation