Advertisement

Journal of Materials Science

, Volume 26, Issue 15, pp 4048–4053 | Cite as

Ultrasonic velocity in sodium borate glasses

  • M. Kodama
Papers

Abstract

Ultrasonic velocities in sodium borate glasses are measured as a function of composition at a frequency of 10 MHz and at a temperature of 298 K by making use of the ultrasonic pulse echo overlap method. Elastic properties of these glasses are analysed in terms of the elastic internal energy due to deformation; elastic resistances of the network-former, B2O3, and the modifier, Na2O, are obtained as a function of composition from the plot ofMV2 againstx2, whereM is the molar mass of sodium borate glasses,V the velocity of sound andx2 the mole fraction of Na2O. The elastic resistances of B2O3 and Na2O are as follows: (i) forx2<0.33, the elastic resistance of B2O3 is smaller than that of Na2O; (ii) atx2=0.33, the elastic resistances of B2O3 and Na2O are equal; (iii) forx2>0.33, the elastic resistance of B2O3 is greater than that of Na2O; (iv) atx2≈0.15, the elastic resistances of B2O3 and Na2O become respectively maximal and minimal; (v) atx2≈0.23, the elastic resistances of B2O3 and Na2O become respectively minimal and maximal; (vi) abovex2=0.36, the elastic resistance of Na2O becomes negative.

Keywords

Sodium Polymer Mole Fraction Borate Elastic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. Griscom, in “Borate Glasses”, edited by L. D. Pye, V. D. Fréchette and N. J. Kreidl (Plenum, New York, 1978) p. 11.Google Scholar
  2. 2.
    M. Kodama,Phys. Chem. Glasses 26 (1985) 105.Google Scholar
  3. 3.
    J. Krogh-Moe,ibid. 6 (1965) 46.Google Scholar
  4. 4.
    J. T. Krause andC. R. Kurkjian, in “Borate Glasses”, edited by L. D. Pye, V. D. Fréchette and N. J. Kreidl (Plenum, New York, 1978) p. 577.Google Scholar
  5. 5.
    J. Lorösch, M. Couzi, J. Pelous, R. Vacher andA. Levasseur,J. Non-Cryst. Solids 69 (1984) 1.Google Scholar
  6. 6.
    M. Imaoka,Yogyo-Kyokai-Shi 69 (1961) 282.Google Scholar
  7. 7.
    J. E. Shelby,J. Amer. Ceram. Soc. 66 (1983) 225.Google Scholar
  8. 8.
    E. P. Papadakis, in “Physical Acoustics”, Vol. 12, edited by W. P. Mason and R. N. Thurston (Academic, New York, 1976) p. 277.Google Scholar
  9. 9.
    M. Kodama andS. Hayashi,Bull. Kumamoto Inst. Tech. 3 (1978) 121.Google Scholar
  10. 10.
    M. Kodama,Jpn. J. Appl. Phys. 21 (1982) 1247.Google Scholar
  11. 11.
    H. J. McSkimin,J. Acoust. Soc. Amer. 33 (1961) 12.Google Scholar
  12. 12.
    P. J. Bray andJ. G. O'Keefe,Phys. Chem. Glasses 4 (1963) 37.Google Scholar
  13. 13.
    G. E. Jellison Jr andP. J. Bray,J. Non-Cryst. Solids 29 (1978) 187.Google Scholar
  14. 14.
    J. Zhong andP. J. Bray,ibid. 111 (1989) 67.Google Scholar
  15. 15.
    W. L. Konijnendijk andJ. M. Stevels,ibid. 18 (1975) 307.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • M. Kodama
    • 1
  1. 1.Department of Industrial ChemistryKumamoto Institute of TechnologyKumamotoJapan

Personalised recommendations