Journal of Materials Science

, Volume 21, Issue 9, pp 3211–3222 | Cite as

Subzero tensile properties of vapour quenched aluminium alloys

  • P. G. Partridge
Papers

Abstract

Supersaturated and metastable aluminium alloy solid solutions containing a dispersed phase have been produced by a vapour quenching technique. Binary alloys contained 3.5% Fe and 5.5% Mn; ternary alloys contained 6 to 9% chromium and 0.5 to 1.2% iron. After rolling into sheet the tensile properties were determined in the temperature range 293 to 77 K. At 77 K tensile strengths of 1115 and 1036 MPa were obtained for two Al-Cr-Fe alloys, equivalent to E/82 and E/83, respectively. These are the highest strengths ever reported for an aluminium alloy. The deformation behaviour at subzero temperatures has indicated the potential for further strengthening of metastable rapidly solidified aluminium alloys by dislocations alone.

Keywords

Tensile Strength Aluminium Alloy Test Temperature Test Piece Uniform Elongation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Bickerdike, D. Clark, J. N. Eastabrook, G. Hughes, W. N. Mair, P. G. Partridge andH. C. Ranson,Int. J. Rapid Soldification,1 (1985) 305.Google Scholar
  2. 2.
    Idem, ibid.,2 (1986) 1.Google Scholar
  3. 3.
    M. S. Binning andP. G. Partridge,Cryogenics 24 (1984) 97.CrossRefGoogle Scholar
  4. 4.
    H. Conrad, in “High Strength Materials” (Wiley, New York, 1965) p. 436.Google Scholar
  5. 5.
    D. A. Wigley, in “Mechanical Properties of Materials of Low Temperatures” (Plenum Press, 1971).Google Scholar
  6. 6.
    E. B. Kula andT. S. Desisto, Behaviour of Materials at Cryogenic Temperatures, ASTM No. 387 (1966) p. 3.Google Scholar
  7. 7.
    A. W. Bowen andP. G. Partridge, in “Titanium Science and Technology”, Vol. 2 (Plenum Press, 1970) p. 1021.Google Scholar
  8. 8.
    F. D. Funkenbusch andT. H. Courtney,Acta Metall. 33 (1985) 913.CrossRefGoogle Scholar
  9. 9.
    A. W. Bowen,Met. Technol. (1978) 17.Google Scholar
  10. 10.
    G. Thomas, D. Schmatz andW. Gerberich, in “High Strength Materials” (Wiley, New York, 1965) p. 251.Google Scholar
  11. 11.
    A. W. Bowen andP. G. Partridge,J. Phys. D: Appl. Phys. 7 (1974) 969.CrossRefGoogle Scholar
  12. 12.
    M. S. Binning andP. G. Partridge, RAE Technical Report No. 81046 (1981).Google Scholar
  13. 13.
    V. F. Zackay andE. R. Parker, in “High Strength Materials” (Wiley, New York, 1965) p. 130.Google Scholar
  14. 14.
    E. Smith, in “Dislocations in Solids” Vol. 4 (North Holland, Amsterdam, 1979) p. 363.Google Scholar
  15. 15.
    J. J. Jonas, C. M. Sellars andW. J. McG. Tegart,Met. Rev. 130 (1969).Google Scholar
  16. 16.
    R. J. McElroy andZ. C. Szkopiak,ibid. 17 (1972) 175.Google Scholar
  17. 17.
    P. G. Partridge andW. Bonfield,J. Mater. Sci. 21 (1986) 3183.Google Scholar
  18. 18.
    V. Gerold, in “Dislocations in Solids” Vol. 4 (North Holland, Amsterdam, 1979) p. 218.Google Scholar
  19. 19.
    H. Mecking, in “Deformation of Polycrystals” ICSMA 5, Vol. 3 (1980) 1573.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • P. G. Partridge
    • 1
  1. 1.Materials and Structures DepartmentRoyal Aircraft EstablishmentFarnboroughUK

Personalised recommendations