Skip to main content
Log in

Modulus-maps for amorphous polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper explores the possibility of constructing modulus-mechanism maps for amorphous polymers. Four regimes are identified: the glassy regime, the visco-elastic regime, the rubbery regime and the regime of viscous flow (melting), truncated by decomposition. Constitutive laws for each regime are assembled and adapted to give a good description of a large body of experimental data for amorphous polymethylmethacrylate and polystyrene. The adjusted laws are then used to construct diagrams which relate the time and temperature-dependent modulus,E(t, T), to the temperature and the loading time (or frequency). The diagrams are divided into fields corresponding to the four regimes. A diagram summarizes the small-strain mechanical behaviour of the polymer over a wide range of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T :

Temperature (K)

σ :

Tensile or compressive stress (MPa)

ε :

Tensile or compressive strain

∴ε :

Tensile or compressive strain rate (sec−1)

t :

Time (sec)

Ν :

Frequency (sec−1)

E :

Time and temperature dependent Young's modulus (GPa)

E 0 :

Modulus of 0 K (GPa)

αm :

Temperature coefficient of modulus

T g :

Glass temperature (K)

T D :

Depolymerization temperature (K)

¯M w,M cr,¯M e :

Molecular weights (kg mol−1)

Q m :

Mean activation energy (kJ mol−1)

δQ/Q m :

Fractional standard deviation of activation energy

δE/E 0 :

Fractional modulus drop at a transition

a T :

Shift factor for time-temperature equivalence

η :

Viscosity (Nsec m−2)

η 0 :

Pre-exponential for viscosity (Nsec m−2)

αg, αv :

Bulk thermal expansion coefficient below and aboveT g (K−1)

C 1,C 2 :

WLF constants (-, K)

ρ :

Density (kg m−3)

f v :

Fractional free volume

V(ε) :

Internal energy per unit volume (J m−3)

R :

Gas constant (8.314 J mol−1 K−1)

Ν 0 :

A pre-exponential frequency factor (sec−1)

References

  1. P. B. Bowden,Polymer 9 (1968) 449.

    Article  CAS  Google Scholar 

  2. I. V. Yannas, in “Deformation in Glassy Polymers — Molecular Interpretation”, Proceedings of the IUPAC Symp., Rio de Janeiro (Elsevier, Amsterdam 1974) p. 1.

    Google Scholar 

  3. I. V. Yannas andR. R. Luise,J. Macromol. Sci. Phys. B21 (1982) 443.

    CAS  Google Scholar 

  4. P. J. Flory, in “Statistical Mechanics of Chain Molecules” (Interscience, New York, 1969).

    Google Scholar 

  5. L. M. Brown, in Proceedings of the 3rd Riso Conference, edited by E. Lilholt and R. Talreja (Riso National Laboratory, Denmark, 1982) p. 1.

    Google Scholar 

  6. M. L. Williams, R. L. Landel andJ. D. Ferry,J. Amer. Chem. Soc. 77 (1955) 3701.

    Article  CAS  Google Scholar 

  7. I. M. Ward, “Mechanical Properties of Polymers” (Wiley, New York, 1971).

    Google Scholar 

  8. R. F. C. Arridge, “Mechanics of Polymers” (Oxford University Press, Oxford, 1975).

    Google Scholar 

  9. R. J. Young, “Introduction to Polymers” (Chapman and Hall, London, 1981).

    Google Scholar 

  10. M. H. Cohen andD. Turnbull,J. Chem. Phys. 31 (1959) 1164.

    Article  CAS  Google Scholar 

  11. R. N. Haward (ed), in “The Physics of Glassy Solids” (Applied Science, London, 1973) p. 1.

    Google Scholar 

  12. F. Bueche,J. Chem. Phys. 22 (1953) 603.

    Google Scholar 

  13. A. S. Argon andL. T. Shi,Phil. Mag. 46 (1982) 275.

    CAS  Google Scholar 

  14. A. K. Doolittle,J. Appl. Phys. 22 (1951) 1471.

    Article  CAS  Google Scholar 

  15. Idem, ibid. 23 (1952) 236.

    Article  CAS  Google Scholar 

  16. J. D. Ferry, “Viscoelastic Properties of Polymers” (Wiley, New York, 1961) Ch. 11.

    Google Scholar 

  17. L. R. G. Treloar, “The Physics of Rubber Elasticity”, Clarendon Press, Oxford, 1958).

    Google Scholar 

  18. M. Doi andS. F. Edwards,J. Chem. Soc., Faraday Trans. 74 (1978) 1789.

    Article  CAS  Google Scholar 

  19. Idem, ibid. 74 (1978) 1802.

    Article  CAS  Google Scholar 

  20. Idem, ibid. 75 (1979) 38.

    Article  CAS  Google Scholar 

  21. Idem, ibid. 74 (1978) 1818.

    Article  CAS  Google Scholar 

  22. P. E. Rouse jr,J. Chem. Phys. 21 (1953) 1272.

    Article  CAS  Google Scholar 

  23. P. G. De Gennes,ibid. 55 (1971) 572.

    Article  Google Scholar 

  24. M. Doi,J. Polym. Sci. Polym. Phys. Ed. 21 (1983) 667.

    Article  CAS  Google Scholar 

  25. S. Loshaek,J. Polym. Sci. 15 (1955) 391.

    Article  CAS  Google Scholar 

  26. S. S. Rogers andL. Mandelkern,J. Phys. Chem. 61 (1957) 945.

    Google Scholar 

  27. J. C. Wittmann andA. J. Kovacs,J. Polym. Sci. C16 (1969) 4443.

    Google Scholar 

  28. T. G. Fox,J. Amer. Chem. Soc. 80 (1958) 1768.

    Article  CAS  Google Scholar 

  29. G. C. Berry andT. G. Fox,Adv. Polym. Sci. 5 (1967) 261.

    Article  Google Scholar 

  30. D. W. Van Krevelen, “Properties of Polymers” (Elsevier, Amsterdam, 1976).

    Google Scholar 

  31. T. G. Fox, S. Gratch andS. Loshaek, in “Rheology: Theory and Applications” edited by F. R. Eirich (Academic Press, New York, 1956) Ch. 12.

    Google Scholar 

  32. T. G. Fox andP. J. Flory,J. Appl. Phys. 21 (1950) 581.

    Article  CAS  Google Scholar 

  33. D. J. Plazek,J. Phys. Chem. 69 (1965) 3480.

    CAS  Google Scholar 

  34. K. Von Schmeider andK. Wolf,Kolloid-Z. 134 (1953) 149.

    Article  Google Scholar 

  35. K. M. Sinnott,J. Polym. Sci. 35 (1959) 272.

    Article  Google Scholar 

  36. Idem, Soc. Plast. Eng. Trans. 2 (1962) 63.

    Google Scholar 

  37. A. Bondi, “Physical Properties of Molecules, Crystals, Liquids and Glasses” (Wiley, New York, 1969) p. 394.

    Google Scholar 

  38. N. G. McCrum, B. E. Read andG. Williams, “Anelastic and Dielectric Effects in Polymer Solids” (Wiley, London, 1967).

    Google Scholar 

  39. S. Iwayanagi andT. Hidehsima,J. Phys. Soc. (Jpn.) 8 (1953) 365.

    Article  CAS  Google Scholar 

  40. Idem, ibid. 8 (1953) 368.

    Article  CAS  Google Scholar 

  41. K. Sato,ibid.,9 (1954) 413.

    Article  Google Scholar 

  42. J. M. Crissman, A. E. Woodward andJ. A. Sauer,J. Polym. Sci. A2 (1965) 2693.

    Google Scholar 

  43. K. Deutsch, E. A. W. Hoff andW. Reddish,ibid. 13 (1954) 565.

    Article  CAS  Google Scholar 

  44. J. Heijboer,Kolloid-Z. 148 (1956) 36.

    Article  CAS  Google Scholar 

  45. N. G. McCrum andE. L. Morris,Proc. R. Soc. A281 (1964) 258.

    Google Scholar 

  46. K. M. Sinnott,J. Polym. Sci. 42 (1960) 3.

    Article  CAS  Google Scholar 

  47. F. A. Johnson andJ. C. Radon,Eng. Fract. Mech. 4 (1972) 555.

    Article  CAS  Google Scholar 

  48. O. Yano andY. Wada,J. Polym. Sci. A2 (1971) 669.

    Google Scholar 

  49. T. M. Connor,ibid. A2 (1970) 191.

    Google Scholar 

  50. K. M. Illers andE. Jenckel,ibid. 41 (1959) 528.

    Article  CAS  Google Scholar 

  51. J. Heijboer, in “Physics of Non-Crystalline Solids” (North Holland, Amsterdam, 1965) 231.

    Google Scholar 

  52. K. M. Illers andE. Jenckel,Rheol. Acta. 1 (1958) 322.

    Article  CAS  Google Scholar 

  53. J. M. Chrissman, A. E. Woodward andJ. A. Sauer,J. Polym. Sci. A1 (1964) 5075.

    Google Scholar 

  54. H. Hendus,Ergeb. Exakt. Naturw. 31 (1959) 220.

    CAS  Google Scholar 

  55. J. T. Seitz, 50th Golden Jubilee of the Rheology Society, Boston, Mass. (1979).

  56. T. Masuda, K. Kitagawa andS. Onogi,Polym. J. (Jpn.) 1 (1970) 418.

    Article  CAS  Google Scholar 

  57. S. Onogi, T. Masuda andK. Kitagawa,Macromols 3 (1970) 109.

    Article  CAS  Google Scholar 

  58. M. J. Kolb andE. F. Izard,J. Appl. Phys. 20 (1949) 564.

    Article  CAS  Google Scholar 

  59. W. G. Gall andN. G. McCrum,J. Polym. Sci. 50 (1961) 489.

    Article  CAS  Google Scholar 

  60. K. Fujino, K. Senshu andH. Kawai,Rept. Prog. Polym. Phys. (Jpn.) 5 (1982) 107.

    Google Scholar 

  61. T. E. Brady andG. S. Y. Yeh,J. Appl. Phys. 42 (1971) 4622.

    Article  CAS  Google Scholar 

  62. G. Natta,J. Polym. Sci. 16 (1955) 143.

    Article  CAS  Google Scholar 

  63. J. T. Williams andK. J. Cleereman, in “Styrene, Its Polymers, Co-polymers and Derivatives” edited by R. H. Boundy and R. F. Boyer (Reinhold, New York, 1952) Ch. 10.

    Google Scholar 

  64. D. G. Gilbert, PhD thesis, Cambridge University (1985).

  65. K. Fujino,et. al. J. Colloid Sci. 16 (1961) 262.

    Article  CAS  Google Scholar 

  66. J. M. Dosser, private communication (1983).

  67. Shell Plastics, Technical Bulletin PS2.1 “Shell Polystyrene Safety Data and Information” (1983).

  68. A. V. Tobolsky, “Properties and Structure of Polymers” (Wiley, New York, 1960).

    Google Scholar 

  69. J. R. McLoughlin andA. V. Tobolsky,J. Colloid. Sci. 7 (1952) 555.

    Article  CAS  Google Scholar 

  70. G. V. Vinogradov,et al. J. Polym. Sci. A2 (1971) 1153.

    Google Scholar 

  71. J. G. Powles andP. Mansfield,Polymer 3 (1962) 336.

    Article  CAS  Google Scholar 

  72. H. Fujita andK. Ninomiya,J. Polym. Sci. 14 (1957) 233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, D.G., Ashby, M.F. & Beaumont, P.W.R. Modulus-maps for amorphous polymers. J Mater Sci 21, 3194–3210 (1986). https://doi.org/10.1007/BF00553357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553357

Keywords

Navigation