Advertisement

Journal of Materials Science

, Volume 21, Issue 4, pp 1166–1170 | Cite as

Stress corrosion cracking behaviour of the duplex Fe-10Al-29Mn-0.4C alloy in 20% NaCl solution at 100° C

  • S. C. Tjong
Papers

Abstract

The stress corrosion cracking behaviour of the duplex Fe-10 Al-29 Mn-0.4 C alloy having two phases (α andγ) in an aqueous 20% NaCl solution (100° C) has been investigated using both the static constant load and dynamic slow strain rate tests. The constant load test shows that the duplex alloy investigated is immune to stress corrosion cracking in a 20% NaCl solution. However, the slow strain-rate test reveals that this alloy is susceptible to stress corrosion cracking at the stabilized corrosion potential, and also at potentials anodic and cathodic to this potential. Furthermore, the metallographic cross section of this duplex alloy after slow strainrate testing shows that the secondary cracks propagate transgranularly through the ferrite grains at and above the stabilized corrosion potential. However, the cracks propagate transgranularly in both the ferrite and austenite grains and also at the austenite-ferrite grain boundaries when the applied potential is cathodic to the stabilized corrosion potential.

Keywords

Polymer Ferrite Austenite Applied Potential Rate Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Schmatz,Trans. ASM 52 (1960) 898.Google Scholar
  2. 2.
    J. L. Ham andR. E. Cairns Jr,Prod. Eng. 29 (1958) 50.Google Scholar
  3. 3.
    J. Charles, A. Berghezan, A. Lutts andP. L. Dancoisne,Metal Prog. 116 (1981) 71.Google Scholar
  4. 4.
    J. C. Garcis, N. Rosas andK. Rioja,ibid. 117 (1982) 47.Google Scholar
  5. 5.
    P. Tomaszewicz andG. R. Wallwork,Corrosion 40 (1984) 152.Google Scholar
  6. 6.
    D. J. Schmatz,Trans. Met. Soc. AIME 215 (1959) 112.Google Scholar
  7. 7.
    V. G. Rivlin,Int. Met. Rev. 28 (1983) 309.Google Scholar
  8. 8.
    G. L. Kayak,Met. Sci. Heat Treat. 2 (1969) 95.Google Scholar
  9. 9.
    R. A. Lula (ed.), “Duplex Stainless Steel” (American Society for Metals, Ohio, 1982) p. 267.Google Scholar
  10. 10.
    R. W. Staehle, J. J. Royeula, R. L. Raredon, E. Serrate, C. R. Morin andR. V. Farrar,Corrosion 26 (1970) 451.Google Scholar
  11. 11.
    S. Barnatt andD. Van Rooyen,J. Electrochem. Soc. 108 (1961) 222.Google Scholar
  12. 12.
    H. H. Uhlig andE. W. Cook,ibid. 116 (1969) 173.Google Scholar
  13. 13.
    M. G. Fontana, F. H. Beck, J. W. Flowers,Met. Prog. 96 (1961) 99.Google Scholar
  14. 14.
    J. Hochmann, A. Desestret, R. Jolly andR. Mayond, in Proceedings of the International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, Unieux-Firminy, France, June 1973 (National Association of Corrosion Engineers, 1977) p. 956.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • S. C. Tjong
    • 1
  1. 1.Institute of Materials Science and EngineeringNational Sun Yat-Sen UniversityKaohsiungTaiwan

Personalised recommendations