Journal of Materials Science

, Volume 13, Issue 7, pp 1503–1508 | Cite as

Phase equilibria in the system CdO-B2O3-SiO2 at 800° C

  • T. D. Lonsdale
  • A. Whitaker


Phase equilibria in the system CdO-B2O3-SiO2 were investigated at 800° C using X-ray powder diffraction techniques. The binary phases reported previously were confirmed, but no ternary phases were found. Solid solution effects were investigated for the primary and binary phases by comparison of patterns; no solid solutions were detected. The relationship of the phase diagram to the composition of photoconductive oxide glasses is discussed and suggestions are made of possible mechanisms responsible for the photoelectric effects.


Oxide Polymer Phase Diagram Solid Solution Phase Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Denton, H. Rawson andJ. E. Stanworth,Nature 173 (1954) 1030.Google Scholar
  2. 2.
    Bh. V. Janakirama-Rao,J. Amer. Ceram. Soc. 48 (1965) 311.Google Scholar
  3. 3.
    K. W. Hanson,J. Electrochem. Soc. 112 (1965) 994.Google Scholar
  4. 4.
    T. N. Kennedy andJ. D. MacKenzie,Phys. Chem. Glass 8 (1967) 169.Google Scholar
  5. 5.
    D. W. Strickler andR. Roy,J. Mater. Sci. 6 (1971) 200.Google Scholar
  6. 6.
    J. B. Goodenough, “Magnetism and the Chemical Bond” (Wiley Interscience, New York, 1963).Google Scholar
  7. 7.
    V. Čáslavská, D. W. Strickler, D. Gibbon andR. Roy,J. Mater. Sci. 3 (1969) 154.Google Scholar
  8. 8.
    V. Čáslavská, D. W. Strickler andR. Roy,J. Amer. Ceram. Soc. 52 (1926) 19.Google Scholar
  9. 9.
    C. Mazetti andF. deCarli,Gazz. Chim. ital. 56 (1926) 19.Google Scholar
  10. 10.
    Th. P. J. Botden andF. A. Kröger,Physica 13 (1947) 216.Google Scholar
  11. 11.
    E. C. Subbarao andF. A. Hummel,J. Electrochem. Soc. 103 (1956) 29.Google Scholar
  12. 12.
    P. B. Hart andE. G. Steward,J. Inorg. Nucl. Chem. 24 (1962) 633.Google Scholar
  13. 13.
    W. D. Hand andJ. Krogh-Moe,J. Amer. Ceram. Soc. 45 (1962) 197.Google Scholar
  14. 14.
    M. Ihara andJ. Krogh-Moe,Acta Cryst. 20 (1966) 132.Google Scholar
  15. 15.
    L. S. Dent Glasser andF. P. Glasser,Inorg. Chem. 3 (1964) 1228.Google Scholar
  16. 16.
    T. J. Rockett andW. R. Foster,J. Amer. Ceram. Soc. 48 (1965) 75.Google Scholar
  17. 17.
    F. C. Kracek, G. W. Morey andH. E. Merwin,Amer. J. Sci. 35A (1938) 143.Google Scholar
  18. 18.
    S. V. Berger,Acta Chem. Scand. 7 (1953) 611.Google Scholar
  19. 19.
    L. H. Van Vlack, “Physical Ceramics for Engineers” (Addison-Wesley Publishing Co. Inc., Reading, Mass., 1964) p. 52.Google Scholar
  20. 20.
    Idem, ibid. p. 302.Google Scholar
  21. 21.
    S. Block, G. Burley, A. Perloff andR. D. Mason, Jr.,J. Res. Nat. Bur. Stand. 62 (1959) 95.Google Scholar
  22. 22.
    J. B. Goodenough, private communication (1977).Google Scholar
  23. 23.
    Z. M. Jarzebski, “Oxide Semiconductors” (Pergamon Press, Oxford, 1973) p. 239.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1978

Authors and Affiliations

  • T. D. Lonsdale
    • 1
  • A. Whitaker
    • 1
  1. 1.Department of PhysicsBrunel UniversityUxbridgeUK

Personalised recommendations