Advertisement

Journal of Materials Science

, Volume 20, Issue 8, pp 2973–2978 | Cite as

Dielectric and crystallization properties of massive amorphous selenium

  • M. F. Kotkata
  • H. A. Khalek
  • W. M. Atia
  • T. Porjesz
  • M. El-Samahy
Papers

Abstract

The dielectric constantε of amorphous selenium at 330kHz has been measured under vacuum as a function of time on different isothermsTa. After a normal heating period, depending onTa, the value ofε increases abruptly from 5.8 to a maximum (9.6 to 11) followed by a decrease to reach a constant value. The behaviour of the curvesε=f(t) is discussed in terms of the structural transformation in the amorphous matrix. The morphological changes during the spherulite growth of selenium are also discussed. The dielectric loss tanδ has been calculated during the crystallization stages using the mesurements of time-dependence of resistivityr(t). The crystallization kinetic parameters have also been computed from the variation ofε during the growth stage. A value of 1.2eV is obtained for the activation energy of the radial growth of selenium in the temperature range 90 to 140° C.

Keywords

Crystallization Activation Energy Selenium Morphological Change Kinetic Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. P. Mamedov andZ. Nurieva,Sov. Phys. Crystall. 12 (1968) 605.Google Scholar
  2. 2.
    J. Grenet, J. P. Larmagnac andP. Michon,Thin Solid Films 67 (1980) 117.Google Scholar
  3. 3.
    M. F. Kotkata andE. A. Mahmoud,Mater. Sci. Eng. 54 (1980) 163.Google Scholar
  4. 4.
    C. G. Ribling, D. T. Pierce andW. E. Spear,Phys. Rev. B4 (1972) 4417.Google Scholar
  5. 5.
    N. A. Blum andC. Feldman,J. Non-Cryst. Solids 22 (1976) 29.Google Scholar
  6. 6.
    M. K. El-Mously, M. F. Kotkata andS. A. Salam,J. Phys. C 11 (1978) 1077.Google Scholar
  7. 7.
    M. F. Kotkata, F. M. Ayad andM. K. El-Mously,J. Non-Cryst. Solids 33 (1979) 13.Google Scholar
  8. 8.
    P. Germain, K. Zellama, S. Squelard andJ. C. Bourgoin,J. Appl. Phys. 50 (1979) 6986.Google Scholar
  9. 9.
    M. K. El-Mously andM. F. Kotkata,Acta Phys. Hung. 43 (1977) 117.Google Scholar
  10. 10.
    L. N. Suvorova, E. V. Shkolnikov andZ. U. Borisova,Inorg. Mater. 12 (1976) 186.Google Scholar
  11. 11.
    J. Tauc, A. Menth andD. L. Wood,Phys. Rev. Lett. 25 (1970) 749.Google Scholar
  12. 12.
    M. Avrami,J. Chem. Phys. 7 (1939) 1103.Google Scholar
  13. 13.
    Idem, ibid. 8 (1940) 212.Google Scholar
  14. 14.
    Idem, ibid. 9 (1941) 177.Google Scholar
  15. 15.
    C. H. Champness andR. H. Hoffmann,J. Non-Cryst. Solids 4 (1970) 138.Google Scholar
  16. 16.
    R. G. Crystal,J. Polym. Sci. 8 (1970) 2153.Google Scholar
  17. 17.
    M. Kawarada andY. Nishina,Jpn. J. Appl. Phys. 14 (1975) 1519.Google Scholar
  18. 18.
    E. A. Marseglia andE. A. Davis,J. Non-Cryst. Solids 50 (1982) 13.Google Scholar
  19. 19.
    M. F. Kotkata andM. H. Aly,Ind. J. Technol. 22 (1984) 170.Google Scholar
  20. 20.
    M. F. Kotkata, G. M. Kamal andM. K. El-Mously,ibid. 20 (1982) 390.Google Scholar
  21. 21.
    A. Goswami andA. P. Goswami,Thin Solid Films 16 (1972) 175.Google Scholar
  22. 22.
    I. Kh. Geller, B. T. Kolomiets andA. I. Popov,Neorg. Mater. 11 (1975) 1936.Google Scholar
  23. 23.
    A. I. Popov,Phys. Chem. Glasses 19 (1978) 43.Google Scholar
  24. 24.
    M. F. Kotkata andM. K. El-Mously,Acta Phys. Hung. 54 (1983) 303.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • M. F. Kotkata
    • 1
  • H. A. Khalek
    • 1
    • 2
  • W. M. Atia
    • 1
    • 2
  • T. Porjesz
    • 1
  • M. El-Samahy
    • 1
  1. 1.Physics DepartmentAin Shams UniversityCairoEgypt
  2. 2.Physics DepartmentSuez Canal UniversityEgypt

Personalised recommendations