Journal of Materials Science

, Volume 20, Issue 8, pp 2945–2957 | Cite as

Precipitation in Ni-Co-Al alloys

Part 2 Discontinuous precipitation
  • C. K. L. Davies
  • P. G. Nash
  • R. N. Stevens
  • L. C. Yap
Papers

Abstract

Discontinuous precipitation of theγ′ phase in Ni-Co-Al alloys has been studied in the temperature range 673 to 973 K using optical microscopy and transmission electron microscopy. Discontinuous precipitation was observed to occur in all the alloys to some degree, the extent of the precipitation decreasing with decreasing cobalt content of the alloy. Only in high cobalt alloys (greater than 38 at%) did the discontinuous transformation go to completion. The discontinuous transformation product consisted of fine straight coherentγ′ lamellae with a specific cube-cube orientation relationship to theγ matrix at low ageing temperatures and short times. At higher temperatures and longer times, continuous and discontinuous coarsening processes produced a coarse, less regular structure with a plate spacing ten times that of the regular structure. The overall kinetics of the discontinuous transformation were affected by the prior continuous precipitation ofγ′ particles ahead of the discontinuous reaction fronts. The coarsening of these continuous particles as a function of time stopped the transformation in low cobalt alloys and continuously slowed the rate of transformation in high cobalt alloys resulting in Avrami exponents,n, less than 1. Reversion experiments and experiments on prestrained specimens yielded Avrami exponents ofn=1 lending support to the above suggestion. The major effect of cobalt in these alloys was to increase their propensity to transform discontinuously. This effect was largely due to the decrease in the rate of continuous precipitation and coarsening as a result of the increased partitioning of cobalt betweenγ andγ′ in high cobalt alloys.

Keywords

Regular Structure Reaction Front Cobalt Content Discontinuous Precipitation Avrami Exponent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Scarlin,Scripta Metall. 10 (1976) 711.Google Scholar
  2. 2.
    W. C. Hagel andH. J. Beattie,Trans. AIME,215 (1959) 1967.Google Scholar
  3. 3.
    C. T. Sims andW. C. Hagel, “The Super-alloys” (Wiley, New York, London, 1972) p. 103.Google Scholar
  4. 4.
    W. Betteridge andJ. Heslop (eds) “The Nimonic Alloys”, 2nd Edn (E. Arnold, London, 1974) p. 72.Google Scholar
  5. 5.
    C. Y. Barlow andB. Ralph,J. Mater. Sci. 14 (1979) 500.Google Scholar
  6. 6.
    G. R. Speich,Trans. AIME 227 (1963) 754.Google Scholar
  7. 7.
    O. V. Tsinenko, L. S. Pshenina, Y. K. Nazarov andA. D. Korotayev,Fiz. Met. Metall. 31 (1971) 757.Google Scholar
  8. 8.
    O. V. Tsinenko, A. N. Tyumentsev, L. S. Bushnev andA. D. Korotayev,ibid. 32 (1971) 58.Google Scholar
  9. 9.
    C. Frantz andM. Gantois, “The Microstructure and Design of Alloys”, Proceedings of the 3rd International Conference on Strength of Metals and Alloys, Cambridge, UK, Vol. 1 (The Metals Society, London, 1974) p. 331.Google Scholar
  10. 10.
    M. A. M. Abdou, PhD thesis, University of London (QMC) (1977).Google Scholar
  11. 11.
    P. G. Nash, PhD thesis, University of London (QMC) (1977).Google Scholar
  12. 12.
    L. C. Yap, PhD thesis, University of London (QMC) (1982).Google Scholar
  13. 13.
    M. Frebel, G. Duddek, W. Graf, M. Faridani andB. Otte,Ber. Bunsenges, Phys. Chem. 82 (1978) 259.Google Scholar
  14. 14.
    R. O. Williams,Trans. AIME 215 (1959) 1026.Google Scholar
  15. 15.
    H. Kreye, E. Hornbogen andF. Haessner,Phys. Status Solidi 1 (1970) 97.Google Scholar
  16. 16.
    E. Hornbogen andM. Roth,Z. Metallkde. 58 (1967) 842.Google Scholar
  17. 17.
    C. K. L. Davies, P. Nash andR. N. Stevens,J. Mater. Sci. 15 (1980) 1521.Google Scholar
  18. 18.
    R. A. Fournelle andJ. B. Clark,Met. Trans. 3 (1972) 2757.Google Scholar
  19. 19.
    D. B. Williams andE. P. Butler,Int. Met. Rev. (1981) 153.Google Scholar
  20. 20.
    W. Gust, in “Phase Transformations”, Vol. 2 (Institute of Metallurgists, London, 1979) p. 27–67.Google Scholar
  21. 21.
    E. Nes andH. Billdal,Acta Metall. 25 (1977) 1039.Google Scholar
  22. 22.
    R. C. Ecob, J. V. Bee andB. Ralph,Met. Trans 11A (1980) 1407.Google Scholar
  23. 23.
    W. Bonfield andB. C. Edwards,J. Mater. Sci. 9 (1974) 409.Google Scholar
  24. 24.
    M. H. Ainsley, G. J. Cocks andD. R. Miller,Met. Sci. 13 (1979) 20.Google Scholar
  25. 25.
    T. V. Nordstrom andC. R. Hills,J. Mater. Sci. 13 (1978) 1700.Google Scholar
  26. 26.
    K. N. Tu andD. Turnbull,Acta Metall. 15 (1967) 369, 1317.Google Scholar
  27. 27.
    A. J. Ardell andR. B. Nicholson,ibid. 14 (1966) 1295.Google Scholar
  28. 28.
    V. A. Phillips,ibid. 14 (1966) 1533.Google Scholar
  29. 29.
    T. R. Anantharaman, V. Ramaswamy andE. P. Butler,J. Mater. Sci. 9 (1974) 240.Google Scholar
  30. 30.
    R. A. Ecob, J. V. Bee andB. Ralph, in “Phase Transformation”, Vol. 2 (Institute of Metallurgists, London, 1979) pp. 11–22.Google Scholar
  31. 31.
    B. E. Sundquist,Met. Trans. 4 (1973) 1919.Google Scholar
  32. 32.
    J. D. Livingston andJ. W. Cahn,Acta Metall. 22 (1974) 495.Google Scholar
  33. 33.
    R. A. Fournelle,ibid. 27 (1979) 1135, 1147.Google Scholar
  34. 34.
    M. Frebel, B. Predel andU. Klisa,Z. Metallkde. 65 (1974) 311.Google Scholar
  35. 35.
    D. B. Williams andJ. W. Edington,Acta Metall. 24 (1976) 323.Google Scholar
  36. 36.
    C. S. Smith,ASM Trans. Quart. 45 (1953) 533.Google Scholar
  37. 37.
    M. Frebel andJ. Schenck,Z. Metallkde. 70 (1979) 230.Google Scholar
  38. 38.
    S. F. Baumahn, J. Michael andD. B. Williams,Acta Metall. 29 (1981) 139.Google Scholar
  39. 39.
    W. A. Johnson andR. F. Mehl,Trans. AIME 135 (1939) 416.Google Scholar
  40. 40.
    M. Avrami,J. Chem. Phys. 7 (1939) 1103,9 (1941) 177.Google Scholar
  41. 41.
    J. W. Cahn,Acta Metall. 4 (1956) 449.Google Scholar
  42. 42.
    H. I. Aaronson andJ. B. Clark,ibid. 16 (1968) 845.Google Scholar
  43. 43.
    B. Predel andW. Gust,Met. Trans. 6A (1975) 137.Google Scholar
  44. 44.
    J. Higgins, R. B. Nicholson andP. Wilkes,Acta Metall. 22 (1974) 201.Google Scholar
  45. 45.
    J. Peterman andE. Hornbogen,Z. Metallkde. 59 (1968) 814.Google Scholar
  46. 46.
    E. Hornbogen,Met. Trans. 3 (1972) 2717.Google Scholar
  47. 47.
    A. Kelly andR. B. Nicholson,Prog. Mater. Sci. 10 (1963) 149.Google Scholar
  48. 48.
    C. K. L. Davies, P. G. Nash andR. N. Stevens,Acta Metall. 28 (1980) 179.Google Scholar
  49. 49.
    H. Borchers andH. Schulz,ibid. 24 (1976) 639.Google Scholar
  50. 50.
    Z. Wendorff andA. Blaszczyk,Met. Tech. 8 (1981) 67.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • C. K. L. Davies
    • 1
  • P. G. Nash
    • 1
  • R. N. Stevens
    • 1
  • L. C. Yap
    • 1
  1. 1.Department of MaterialsQueen Mary CollegeLondonUK

Personalised recommendations