Advertisement

Journal of Materials Science

, Volume 19, Issue 1, pp 291–296 | Cite as

Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials

  • Kazumasa Matusita
  • Takayuki Komatsu
  • Ryosuke Yokota
Article

Abstract

An equation expressing the volume fraction,x, of crystals precipitating in a glass heated at a constant rate, α, was derived. When crystal particles grow m-dimensionally,x is expressed as In [- ln(1 -x)] = -n (nα - 1.052mE/RT + Constant whereE is the activation energy for crystal growth andn is a numerical factor depending on the nucleation process. When the nuclei formed during the heating at the constant rate,α, are dominant,n is equal tom + 1, and when the nuclei formed in the previous heat-treatment before thermal analysis run are dominant,n is equal tom. The validity and usefulness of this equation was ascertained by applying it to a Li2O·2SiO2 glass. A method for determining the values ofn andm from DSC curves was proposed and it was concluded that the modified Ozawa-type plot is very useful and convenient to obtain the activation energy for crystal growth.

Keywords

Polymer Crystallization Activation Energy Thermal Analysis Crystal Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Kissinger,Anal. Chem. 29 (1957) 1702.Google Scholar
  2. 2.
    T. Ozawa,J. Thermal Anal. 2 (1970) 301.Google Scholar
  3. 3.
    J. Colmenero andJ. M. BarandiarÁN,J. Non-Cryst. Solids 30 (1979) 263.Google Scholar
  4. 4.
    J. Colmenero andJ. Ilarraz,Thermochim. Acta 35 (1980) 381.Google Scholar
  5. 5.
    A. Marrota, A. Buri, F. Branda andS. Saiello, “Advances in Ceramics, Vol. 4, Nucleation and Crystallization in Glasses”, edited by J. H. Simmons, D. R. Uhlmann and G. H. Beall (The American Ceramic Society, Coulombus, 1982) pp. 146–152.Google Scholar
  6. 6.
    A. Marrota, S. Saiello, F. Branda andA. Buri,J. Mater. Sci. 17 (1982) 105.Google Scholar
  7. 7.
    A. Lucci, L. Battezzati, C. Antonione andG. Riontino,J. Non-Cryst. Solids 44 (1981) 287.Google Scholar
  8. 8.
    D. W. Henderson,ibid. 30 (1979) 301.Google Scholar
  9. 9.
    E. M. Marseglia,ibid. 41 (1980) 31.Google Scholar
  10. 10.
    K. Harnisch andR. Lanzenberger,ibid. 53 (1982) 235.Google Scholar
  11. 11.
    M. E. Fine, “Introduction to Phase Transformation in Condensed System” (Macmillan, New York, 1964) Chap. 3.Google Scholar
  12. 12.
    K. Matusita andS. Sakka,Phys. Chem. Glasses 20 (1979) 81.Google Scholar
  13. 13.
    Idem, J. Non-Cryst. Solids 38/39 (1980) 741.Google Scholar
  14. 14.
    Idem, Bull. Inst. Chem. Res. Kyoto Univ. 59 (1981) 159.Google Scholar
  15. 15.
    D. Turnbull andM. H. Cohen, “Modern Aspects of the Vitreous State”, edited by J. D. Mackenzie (Butterworth, London, 1960) pp. 38–62.Google Scholar
  16. 16.
    K. Matusita andM. Tashiro,Phys. Chem. Glasses 14 (1973) 77.Google Scholar
  17. 17.
    K. Matusita, T. Maki andM. Tashiro,ibid. 15 (1974) 106.Google Scholar
  18. 18.
    C. D. Doyle,J. Appl. Polym. Sci. 5 (1961) 285.Google Scholar
  19. 19.
    Idem, ibid. 6 (1962) 639.Google Scholar
  20. 20.
    K. Matusita andM. Tashiro,J. Non-Cryst. Solids 11 (1973) 471.Google Scholar
  21. 21.
    E. G. Rowlands andP. F. James,Phys. Chem. Glasses 20 (1979) 1 & 9.Google Scholar
  22. 22.
    K. Matusita andM. Tashiro,Yogyo-Kyokai-Shi 81 (1973) 500.Google Scholar
  23. 23.
    N. K. Chakraborty, S. K. Das, S. K. Niyogi andR. L. Thakur, Proceed. Xth ICG, No. 14 (The Ceramic Society of Japan, Tokyo, 1974) pp. 75–82.Google Scholar
  24. 24.
    J. Götz,Phys. Chem. Glasses 18 (1977) 32.Google Scholar
  25. 25.
    A. Marrota, A. Buri andF. Branda,Thermochim. Acta 40 (1980) 397.Google Scholar
  26. 26.
    S. Risbud,J. Amer. Ceram. Soc. 56 (1973) 440.Google Scholar
  27. 27.
    K. Matsuura andK. Suzuki,J. Mater. Sci. 14 (1979) 395.Google Scholar
  28. 28.
    D. D. Thornburg andR. I. Johnson,J. Non-Cryst. Solids 17 (1975) 2.Google Scholar
  29. 29.
    A. H. Abouelela, M. K. Elmously andK. S. Abdu,J. Mater. Sci. 15 (1980) 871.Google Scholar
  30. 30.
    J. A. Leake andA. L. Greer,J. Non-Cryst. Solids 38/39 (1980) 735.Google Scholar
  31. 31.
    C. Antonione, L. Battezzati, A. Lucci, G. Riontino andG. Venturello,Scripta Metall 12 (1978) 1011.Google Scholar
  32. 32.
    A. Inoue, Y. Takahashi, C. Suryanarayana, T. Masumoto,J. Mater. Sci. 17 (1982) 3253.Google Scholar
  33. 33.
    Z. Altounian, T. Guo-Hua andJ. O. Stromolsen,J. Appl. Phys. 53 (1982) 4755.Google Scholar

Copyright information

© Chapman and Hall Ltd 1984

Authors and Affiliations

  • Kazumasa Matusita
    • 1
  • Takayuki Komatsu
    • 1
  • Ryosuke Yokota
    • 1
  1. 1.Department of Materials Science and TechnologyTechnological University of NagaokaNiigata-kenJapan

Personalised recommendations