Skip to main content
Log in

Avian peptidase isozymes: Tissue distributions, substrate affinities, and assignment of homology

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Peptidase (EC 3.4.13.9 and EC 3.4.13.11) isozymes were examined from 14 tissues of 19 species of birds, representing 8 families and 6 orders, via horizontal starch gel electrophoresis. Peptidases were detected by employing histochemical staining techniques utilizing 13 di-, tri-, and tetrapeptides as substrates. It was determined that there is a minimum of six presumptive structural gene loci encoding peptidases in birds (excluding those encoding cytosol aminopeptidase; EC 3.4.11.1). The products of the peptidase loci were widely expressed in most tissues with the exception of Pep-F, which was restricted to pancreas. Products of most loci have multiple, overlapping substrate affinities (except for the products of Pep-D, which react only with a peptide containing a carboxyterminal proline). By using a combination of differential electrophoretic mobility and substrate preferences, the products of the various peptidase loci can be distinguished from one another. The homologies of the avian peptidases with those in other vertebrates were tentatively established and it is suggested that the nomenclature proposed by Rapleyet al. (Ann. Hum. Genet. 34:307, 1971) be applied to avian peptidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Ornithologists' Union (1983).Check-list of North American Birds 6th ed., Allen Press, Lawrence, Kan.

    Google Scholar 

  • Ankeny, C. D., Dennis, D. G., Wishard, L. N., and Seeb, J. E. (1986). Low genetic variation between black ducks and mallards.Auk 103701.

    Google Scholar 

  • Avise, J. C., Patton, J. C., and Aquadro, C. F. (1980a). Evolutionary genetics of birds. I. Relationships among North American thrushes and allies.Auk 97135.

    Google Scholar 

  • Avise, J. C., Patton, J. C., and Aquadro, C. F. (1980b). Evolutionary genetics of birds. II. Conservative protein evolution in North American sparrows and relatives.Syst. Zool. 29323.

    Google Scholar 

  • Barrowclough, G. F., and Corbin, K. W. (1978). Genetic variation and differentiation in the Parulidae.Auk 95691.

    Google Scholar 

  • Braun, M. J., and Robbins, M. B. (1986). Extensive protein similarity of the hybridizing chickadeesParus atricapillus andP. carolinensis.Auk 103667.

    Google Scholar 

  • Braun, D., Kitto, G. B., and Braun, M. J. (1984). Molecular population genetics of tufted and black-crested forms ofParus bicolor.Auk 101170.

    Google Scholar 

  • Chenoweth, D., Mitchel, R. E. J., and Smith, E. L. (1973). Aminotripeptidase of swine kidney. I. Isolation and characterization of three different forms; Utility of the enzyme in sequence work.J. Biol. Chem. 2481672.

    Google Scholar 

  • Christidis, L. (1987). Biochemical systematics within palaeotropic finches (Aves: Estrildidae).Auk 104380.

    Google Scholar 

  • Cole, S. R., and Parkin, D. T. (1981). Enzyme polymorphism in the house sparrowPasser domesticus.Biol. J. Linn. Soc. 1513.

    Google Scholar 

  • Cooke, F., Parkin, D. T., and Rockwell, R. F. (1988). Evidence of former allopatry of the two color phases of lesser snow geese (Chen caerulescens caerulescens).Auk 105467.

    Google Scholar 

  • Cracraft, J. (1981). Toward a phylogenetic classification of the recent birds of the world (class Aves).Auk 98681.

    Google Scholar 

  • Dessauer, H. C., and Cole, C. J. (1984). Influence of gene dosage on electrophoretic phenotypes of proteins from lizards of the genusCnemidophorus.Comp. Biochem. Physiol. 77B181.

    Google Scholar 

  • Dessauer, H. C., and Densmore, L. D. (1983). Biochemical genetics.Comp. Biochem. Physiol. 74B(i):6.

    Google Scholar 

  • Frick, L. (1981).A Biochemical, Phylogenetic, and Immunological Investigation of the Cytosolic Di- and Tripeptidases of Fishes Unpublished Ph.D. dissertation, Department of Zoology, University of Hawaii, Honolulu.

    Google Scholar 

  • Frick, L. (1983). An electrophoretic investigation of the cytosolic di- and tripeptidases of fish: Molecular weights, substrate specificities, and tissue and phylogenetic distributions.Biochem. Genet. 21309.

    Google Scholar 

  • Gartside, D. F., Dessauer, H. C., and Joanen, T. (1977). Genic homozygosity in an ancient reptile (Alligator mississippiensis).Biochem. Genet. 15655.

    Google Scholar 

  • Gill, F. B. (1987). Allozymes and genetic similarity of blue-winged and golden-winged Warblers.Auk 104444.

    Google Scholar 

  • Grudzien, T. A., and Moore, W. S. (1986). Genetic differentiation between the yellow-shafted and red-shafted subspecies of the Northern Flicker.Biochem. Systm. Ecol. 14451.

    Google Scholar 

  • Guttman, S. I., Grau, G. A., and Karlin, A. A. (1980). Genetic variation in Lake Erie (USA) great blue herons (Ardea herodias).Comp. Biochem. Physiol. 66B167.

    Google Scholar 

  • Harris, H., and Hopkinson, D. A. (1976).Handbook of Enzyme Electrophoresis in Human Genetics North-Holland, Amsterdam.

    Google Scholar 

  • Hillis, D. M., Frost, J. S., and Wright, D. A. (1983). Phylogeny and biogeography of theRana pipiens complex: A biochemical evaluation.Syst. Zool. 32132.

    Google Scholar 

  • International Union of Biochemistry (1984).Enzyme Nomenclature, 1984 Academic Press, New York.

    Google Scholar 

  • Lanyon, S. M. (1985). Molecular perspectives on higher-level relationships in the Tyrannoidea (Aves).Syst. Zool. 34404.

    Google Scholar 

  • Lougheed, S. C., and Rosser, B. W. C. (1987). A survey of tissue-specific isozyme expressions during chicken ontogeny.Biochem. Genet. 25275.

    Google Scholar 

  • Marsden, J. E., and May, B. (1984). Feather pulp: A nondestructive sampling technique for electrophoretic studies of birds.Auk 101173.

    Google Scholar 

  • Matson, R. H. (1984). Applications of electrophoretic data in avian systematics.Auk 101717.

    Google Scholar 

  • Matson, R. H. (1987).Biochemical Genetics and Systematic Applications of Avian Isozyme Characters Unpublished Ph.D. dissertation, Department of Biology, University of California, Los Angeles.

    Google Scholar 

  • Merritt, R. B., Rogers, J. F., and Kurz, B. J. (1978). Genic variability in the longnose dace,Rhinichthys cataractae.Evolution 32116.

    Google Scholar 

  • Morizot, D. C., Anthony, R. G., Grubb, T. G., Hoffman, S. W., Schmidt, M. E., and Ferrell, R. E. (1985). Clinical genetic variation at enzyme loci in Bald Eagles (Haliaeetus leucocephalus) from the western United States.Biochem. Genet. 23337.

    Google Scholar 

  • Rapley, S., Lewis, W. H. P., and Harris, H. (1971). Tissue distributions, substrate specificities and molecular sizes of human peptidases determined by separate gene loci.Ann. Hum. Genet. 34307.

    Google Scholar 

  • Richardson, B. J., Baverstock, P. R., and Adams, M. (1986).Allozyme Electrophoresis, A Handbook for Animal Systematics and Population Studies Academic Press, Orlando, Fla.

    Google Scholar 

  • Ross, H. A. (1983). Genetic differentiation of starling (Sturnus vulgaris: Aves) populations in New Zealand and Great Britain.J. Zool. Lond. 201351.

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genusPeromyscus. I. Variation in the old field mouse (Peromyscus polionotus).Stud. Genet. VI Univ. Tex. Publ. 710349.

    Google Scholar 

  • Sibley, C. G., Ahlquist, J. E., and Monore, B. L., Jr. (1988). A classification of the living birds of the world based on DNA-DNA hybridization studies.Auk 105409.

    Google Scholar 

  • Womack, J. E., and Fitzgerald, K. B. (1973). Comparative tissue distribution and substrate specificity of electrophoretical distinct peptidases in the rabbit, the rat, and the gerbil.Comp. Biochem. Physiol. 44B915.

    Google Scholar 

  • Wright, D. A., and Richards, C. M. (1982). Peptidase isozymes of the leopard frogRana pipiens: Properties and genetics.J. Exp. Zool. 221283.

    Google Scholar 

  • Wright, D. A., Richards, C. M., Frost, J. S., Camozzi, A. M., and Kunz, B. J. (1983). Genetic mapping in amphibians.Isozymes Curr. Topics Biol. Med Res. 10287.

    Google Scholar 

  • Yut, J., and Weitkamp, L. R. (1979). Equine peptidases: Correspondence with human peptidases and polymorphism for erythrocyte peptidase A.Biochem. Genet. 17987.

    Google Scholar 

  • Zink, R. M. (1982). Patterns of genic and morphologic variation among sparrows in the generaZonotrichia, Melospiza, Junco, andPasserella.Auk 99632.

    Google Scholar 

  • Zink, R. M., and Winkler, D. W. (1983). Genetic and morphological similarity of two California Gull populations with different life history traits.Biochem. Syst. Ecol. 11397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support for this research was provided by several Organismal Biology Grants provided through the Department of Biology, UCLA; UCLA Travel and Research Grants; and a NSF Doctoral Dissertation Improvement Grant (BSR 85-01245) to RHM; and the UCLA Biomedical Support Grant and UCLA Committee on Research Grant (U.R. 3674) to D. G. Buth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matson, R.H. Avian peptidase isozymes: Tissue distributions, substrate affinities, and assignment of homology. Biochem Genet 27, 137–151 (1989). https://doi.org/10.1007/BF00552988

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552988

Key words

Navigation