Advertisement

Journal of Materials Science

, Volume 16, Issue 10, pp 2760–2766 | Cite as

The effect of the second-phase volume fraction on the grain size stability and flow stress during superplastic flow of binary alloys

  • Adi Arieli
Papers

Abstract

This paper considers to what extent the second-phase volume fraction in superplastic binary alloys affect the matrix grain size stability during deformation and, through it, the flow stress at constant temperature and strain rate. It is shown for five different superplastic binary alloy systems, that at constant temperature and strain rate the flow stress will increase with the deviation of the second-phase volume fraction in the alloys from that required for maximum matrix grain size stability. A new parameter (Z) which quantifies these deviations has been introduced in this paper. The possible errors in determining the pertinent parameters in the rate equation for superplastic flow by testing alloys withZ is discussed.

Keywords

Polymer Grain Size Constant Temperature Flow Stress Rate Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Edington, K. N. Melton andC. P. Cutler,Prog. Mater. Sci. 21 (1976) 61.Google Scholar
  2. 2.
    K. Smidoda, C. Gottshalk andM. Gleiter,Acta Met. 26 (1978) 1833.Google Scholar
  3. 3.
    A. Arieli andA. K. Mukherjee, in “Micromechanisms for Plasticity and Fracture in Engineering Solids” edited by D. M. R. Taplin (Pergamon Press, Oxford, 1981).Google Scholar
  4. 4.
    R. B. Nicholson, in “Electron Microscopy and Structure of Materials”, edited by G. Thomas (University of California Press, Berkely, 1972) p. 689.Google Scholar
  5. 5.
    A. Arieli andA. K. Mukherjee,Mater. Sci. Eng. 45 (1980) 61.Google Scholar
  6. 6.
    M. F. Ashby,Surface Sci. 31 (1972) 498.Google Scholar
  7. 7.
    A. K. Mukherjee,Ann. Rev. Mater. Sci. 9 (1979) 191.Google Scholar
  8. 8.
    T. H. Alden, in “Treatize on Materials Science and Technology”, Vol. 6, edited by R. J. Arsenaoult (Academic Press, New York, 1975) p. 226.Google Scholar
  9. 9.
    S. Floreen,Scripta Met. 4 (1967) 19.Google Scholar
  10. 10.
    W. Beere,Scripta Met. 12 (1978) 337.Google Scholar
  11. 11.
    T. Gladman,Proc. Roy. Soc. A294 (1966) 298.Google Scholar
  12. 12.
    J. W. Edington,Met. Tech. 3 (1976) 138.Google Scholar
  13. 13.
    P. Hellman andM. Hillert,Scand. J. Metall. 4 (1975) 211Google Scholar
  14. 14.
    C. W. Corti,Scripta Met. 12 (1978) 65.Google Scholar
  15. 15.
    R. E. Reed-Hill, “Physical Metallurgy Principles”, (Van Nostrand Co., New York, 1964).Google Scholar
  16. 16.
    M. Suery andB. Baudelet,Phil. Mag. 41 (1980) 41.Google Scholar
  17. 17.
    K. Matsuki, K. Minami, M. Tokizawa andY. Murakami,Met. Sci. 8 (1979) 619.Google Scholar
  18. 18.
    G. Herriot, B. Baudelet andJ. J. Jonas,Acta Met. 24 (1976) 687.Google Scholar
  19. 19.
    O. A. Kaybishev, I. V. Kazachov andB. V. Rodionov,Fiz. Metal. Metalloved. 39 (1975) 338.Google Scholar
  20. 20.
    S. Kayali, PhD Dissertation, Standford University (1976).Google Scholar
  21. 21.
    R. D. Caliguiri, PhD dissertation, Standford University (1977).Google Scholar
  22. 22.
    B. Walser andO. D. Sherby,Met. Trans. 10A (1979) 1461.Google Scholar
  23. 23.
    F. A. Mohamed, M. M. I. Ahmed andT. G. Langdon,Met. Trans. 8A (1977) 933.Google Scholar
  24. 24.
    L. C. A. Samuelsson, K. N. Melton andJ. W. Edington,Acta Met. 24 (1974) 1017.Google Scholar
  25. 25.
    A. Arieli andA. K. Mukherjee, presented at AIME Fall Meeting, Pittsburgh, PA, October 1980; also,Met. Trans. A, in press.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1981

Authors and Affiliations

  • Adi Arieli
    • 1
  1. 1.Metals Research LaboratoriesOlin Corp.New HavenUSA

Personalised recommendations