Journal of Materials Science

, Volume 16, Issue 10, pp 2710–2716 | Cite as

Effect of the starting Al2O3 and of the method of preparation on the characteristics of Li-stabilized β″-Al2O3 ceramics

  • R. Kvachkov
  • A. Yanakiev
  • C. N. Poulieff
  • I. Balkanov
  • P. D. Yankulov
  • E. Budevski
Papers

Abstract

The influence of the morphology and the size of the particles of various types of starting Al2 O3 material on the synthesis and characteristics of Li-stabilizedβ′'-Al2O3 ceramics have been investigated. The use of highly dispersed oxides makes it possible to attain higher densities in the fired ceramic bodies due to their higher reactivity. In the case of oxides obtained from ammonium alum, the degree of dispersion and the reactivity may be increased by raising the amount ofγ-Al2O3 up to a certain limit. Alumina prepared from Al2 (OH)5 NO3 by slurry solution spray-drying also gives satisfactory results despite its lower degree of dispersion. This is connected with the morphology of the particles. In the case of synthesized materials containing an insufficient amount ofβAl2O3-NaAlO2 eutectic, high densities may also be achieved by applying a two-step firing schedule at temperatures above the melting point of the eutectic.

Keywords

Oxide Polymer Alumina Ammonium Al2O3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ph. Colomban, Thèse Doct. d'Etat Univ. P. et M. Curie, Paris (1979).Google Scholar
  2. 2.
    A. V. Virkar, G. R. Miller, R. S. Gordon,J. Amer. Ceram. Soc. 61 (1978) 250.Google Scholar
  3. 3.
    G. E. Youngblood, G. R. Miller andR. S. Gordon,ibid. 61 (1978) 86.Google Scholar
  4. 4.
    T. J. Whalen, G. J. Tennenhouse andC. Meyer,ibid. 57 (1974) 497.Google Scholar
  5. 5.
    K. D. Kinsman andG. J. Tennenhouse,ibid. 62 (1979) 111.Google Scholar
  6. 6.
    L. C. De Jonghe,J. Mater. Sci. 14 (1979) 33.Google Scholar
  7. 7.
    W. G. Bugden andJ. H. Duncan, 2nd International Meeting on Solid Electrolytes, St. Andrews, Scotland, 1978, Ext. Abstr. 4.4.Google Scholar
  8. 8.
    N. Yanakiev, Bulgarian Invention No. 20891, “Method for Preparation of Aluminium Hydroxynitrate” (1975).Google Scholar
  9. 9.
    “Research on Electrodes and Electrolytes for the Ford Sodium-Sulfur Battery”, Ford Motor Co., Semiannual Report (1975), Contract No. NSF-C805, January 1976.Google Scholar
  10. 10.
    “Research on Electrodes and Electrolytes for the Ford Sodium-Sulfur Battery”, Ford Motor Co., Semiannual Report (1976), Contract No. NSF-C805, January 1977.Google Scholar
  11. 11.
    Bulgarian Invention No. 19443, “Method for Sintering of Beta-Alumina Ceramics as Hollow Cylinders” (1973).Google Scholar
  12. 12.
    C. N. Poulieff, R. Kvachkov andI. Balkanov,Mater. Res. Bull. 13 (1978) 323.Google Scholar
  13. 13.
    J. T. Kummer “Progress in Solid State Chemistry”, Vol. 7 (Pergamon Press, New York, 1972) p. 141.Google Scholar
  14. 14.
    A. V. Virkar, G. J. Tennenhouse andR. S. Gordon,J. Amer. Ceram. Soc. 57 (1974) 508.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1981

Authors and Affiliations

  • R. Kvachkov
    • 1
  • A. Yanakiev
    • 1
  • C. N. Poulieff
    • 1
  • I. Balkanov
    • 1
  • P. D. Yankulov
    • 1
  • E. Budevski
    • 1
  1. 1.Central Laboratory of Electrochemical Power SourcesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations